
1 | P a g e

Unit 2 Seminar

Title: Requirements Gathering

Requirement gathering is crucial for collecting and documenting information to

understand the client's needs and define project objectives. It also guides product or

service development (Sire, 2023). Smartbear (2023) states that Gherkin is a simple,

plain-text language that non-programmers can easily understand. It allows concise

descriptions of test scenarios and examples to illustrate business rules in real-world

domains. Furthermore, Nicieja (2017) explains that Gherkin is a language used for

writing requirements in Specification by Example (SBE), which helps bridge the gap

between stakeholders and technical teams. It provides a clear and structured way to

express requirements.

Gherkin is a descriptive language used for writing requirements under Specification

by Example (SBE), as explained by Carballo (2022). It is part of the Domain Specific

Language (DSL) family and is easily understood by all roles involved in the software

development process. The basic syntax of a file written in Gherkin language consists

of a feature, business definitions, assumptions, background, scenario, scenario

outline, and When.

Gherkin uses the Given, When, and Then keywords to establish preconditions for

executing requirements. The Given keyword initialises data, creates instances, and

sets the database state. The When keyword describes the user's essential action on

the system, which triggers the test. The When command describes interaction with a

web page, another user interface element, an API, or a library function, as stated by

Carballo (2022). Moreover, the And and But words allow multiple Givens, When’s,

and Then statements within the same test scenario. The And word replaces the

2 | P a g e

repetition of Givens, When’s, and Then’s, while the But word describes an adverse

action or result, making the code more understandable to readers.

Collecting project requirements can be time-consuming and costly. To avoid

communication failure, use the Gherkin language to simplify the process. Gherkin is

a natural language that helps business analysts and developers create scenarios for

functional tests. Its specific syntax allows for easy understanding and discussion of

requirements. The requirements collected in Gherkin are saved to a feature file,

which can be used for automated tests in Behaviour-driven development using

Cucumber (Nowacki, 2016).

Fitzgibbons (N.D.) emphasises that Behaviour-driven development (BDD) is not just

a methodology but a collaborative approach that is a crucial aspect of Agile software

development. It uniquely combines the benefits of Test-Driven Development (TDD)

and acceptance testing, fostering collaboration among developers, QA, and non-

technical or business participants in a software project. BDD focuses on

understanding software behaviour through stakeholder discussion, making it a

powerful tool for aligning business and technical perspectives. BDD practices involve

establishing goals, drawing out features, involving stakeholders, using examples to

describe application behaviour, automating examples for quick feedback, clarifying

responsibility using "should" and "ensure", using mocks, and implementing UI first

(Readthedocs, 2020).

Akhtar (2023) underscores BDD's significant growth trajectory, positioning it as a

game-changer in the software industry. This projection highlights BDD's increasing

popularity and potential to shape the future of software development, making it a

compelling area for professional growth and development.

3 | P a g e

BDD is a process that involves close collaboration between business, development,

and QA teams. The teams work together to create a script, written in the Gherkin

language, that precisely describes the software's behaviour. This script is then

transformed into automated tests that verify whether the software behaves as

expected. The advantages of BDD are numerous and significant, including improved

collaboration, enhanced requirement understanding, early defect detection, and

increased test coverage. BDD's clear and structured process enhances the

software's quality and fosters a culture of collaboration and shared understanding

among the teams involved.

Behavior refers to how an individual interacts with the environment and is about the

action-reaction process. BDD is an Agile software development process that

combines an engineering component with a business goal, is test-centred and

focuses on the product's expected behaviours. Scenarios are the cornerstone of

BDD, which can be run manually or automatically (Sheremeta, 2022).

Below is the Gherkin sequence that addresses using a computer running the Linux

operating system based on the Readthedocs (2020) ideas:

4 | P a g e

Feature: Using a virtual instance running Linux Kali OS

Scenario: Logging into the Linux System

 Given I am at the login screen.

 When I enter my username and password

 then I should be logged into the Linux system.,

Scenario: Navigating the File System

 Given I am logged into the Linux system.

 When I open the terminal emulator

 and I type "ls" to list files in the current directory

 then I should see a list of files and directories.,

Scenario: Editing Configuration Files

 Given I am logged into the Linux system

 When I open a text editor using the command vim

 and I edit a configuration file (vim /etc/ssh/sshd_config)

 then I should save the changes and exit the text editor.

In BDD, stories are the fundamental unit of functionality, and acceptance criteria are

an intrinsic part. They define the scope of the behaviour and provide a shared

definition of "done." Conversations between stakeholders, analysts, testers, and

developers create these stories. BDD is as much about the interactions between the

various people in the project as it is about the development process's outputs

(Dannorth, 2007).

5 | P a g e

References:

• Sire, T. (2023). How to Gather Requirements as a Business Analyst (Guide).

[online] Available from: https://www.requiment.com/how-to-gather-

requirements-as-a-business-analyst/ [Accessed 24 Mar. 2024].

• Smartbear (2023). Writing scenarios with Gherkin syntax | CucumberStudio

Documentation. [online] Available from:

https://support.smartbear.com/cucumberstudio/docs/bdd/write-gherkin-

scenarios.html#:~:text=To%20create%20Gherkin%20test%20scenarios

[Accessed 24 Mar. 2024].

• Nicieja, K. (2017). Chapter 1. Introduction to specification by example and

Gherkin · Writing Great Specifications: Using Specification by Example and

Gherkin. [online] Available from: https://livebook.manning.com/book/writing-

great-specifications/chapter-1/52 [Accessed 25 Mar. 2024].

• Carballo, P. (2022). Writing Specification by Example Requirements with

Gherkin. Available from: https://www.octobot.io/blog/gherkin-specification-by-

example/ [Accessed 25 Mar. 2024].

• Nowacki, Ł. (2016). Speak Gherkin and learn how to collect requirements for

your project. Available from: https://neoteric.eu/blog/speak-gherkin-and-learn-

how-to-collect-requirements-for-your-project/ [Accessed 25 Mar. 2024].

• Fitzgibbons, L (N.D.). What is behavior-driven development (BDD)? Definition

from SearchSoftwareQuality. [online] Available from:

https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-

development-BDD [Accessed 25 Mar. 2024].

• Readthedocs (2020). Behavior Driven Development — behave 1.2.6

documentation. [online] Available from:

https://behave.readthedocs.io/en/stable/philosophy.html#the-gherkin-language

[Accessed 25 Mar. 2024].

• Akhtar, H. (2023). What is BDD? (Behavior-Driven Development). Available

from: https://www.browserstack.com/guide/what-is-bdd [Accessed 25 Mar.

2024].

• Sheremeta, O. (2022). BDD & Agile Methodologies in QA. Available from:

https://testomat.io/blog/behavior-driven-development-agile-methodologies-in-

quality-assurance/ [Accessed 18 Mar. 2024].

• Dannorth (2007). What’s in a Story? [online] Available from:

https://dannorth.net/whats-in-a-story/ [Accessed 25 Mar. 2024].

https://www.requiment.com/how-to-gather-requirements-as-a-business-analyst/
https://www.requiment.com/how-to-gather-requirements-as-a-business-analyst/
https://support.smartbear.com/cucumberstudio/docs/bdd/write-gherkin-scenarios.html#:~:text=To%20create%20Gherkin%20test%20scenarios
https://support.smartbear.com/cucumberstudio/docs/bdd/write-gherkin-scenarios.html#:~:text=To%20create%20Gherkin%20test%20scenarios
https://livebook.manning.com/book/writing-great-specifications/chapter-1/52
https://livebook.manning.com/book/writing-great-specifications/chapter-1/52
https://www.octobot.io/blog/gherkin-specification-by-example/
https://www.octobot.io/blog/gherkin-specification-by-example/
https://neoteric.eu/blog/speak-gherkin-and-learn-how-to-collect-requirements-for-your-project/
https://neoteric.eu/blog/speak-gherkin-and-learn-how-to-collect-requirements-for-your-project/
https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-development-BDD
https://www.techtarget.com/searchsoftwarequality/definition/Behavior-driven-development-BDD
https://behave.readthedocs.io/en/stable/philosophy.html#the-gherkin-language
https://www.browserstack.com/guide/what-is-bdd
https://testomat.io/blog/behavior-driven-development-agile-methodologies-in-quality-assurance/
https://testomat.io/blog/behavior-driven-development-agile-methodologies-in-quality-assurance/
https://dannorth.net/whats-in-a-story/

