
1 | P a g e

Unit 9: Developing an API for a Distributed Environment

1. Create an API and use it to create and read records.

In the world of modern software development, APIs play a foundational role. They

serve as the software codes that facilitate communication between two programs,

offering developers a straightforward set of methods for accessing data across multiple

channels. APIs are a potent tool, providing authorisation and access to the data that

users and other applications require. The most prevalent API architectures are

Representational State Transfer (REST) and Simple Object Access Protocol (SOAP)

(Lutkevich & Nolle, N.D).

Lutkevich & Nolle (N.D) state that APIs have significantly transformed software

development, enabling businesses to streamline their internal development processes,

collaborate more efficiently with other developers, and enhance customer experience.

By providing a standardised set of rules for writing application code, APIs have helped

businesses reduce development time and cost while minimising the risk of errors. APIs

also allow companies to securely manage their data and service functionality, expand

their customer base, and generate revenue by monetising their services. This has

created new business opportunities to grow and thrive in the digital age.

However, for Gillis (N.D.), building an API from scratch can be challenging and involves

many complex steps. These can entail setting up several endpoints, configuring a

server, managing requests and responses, and connecting to a database. It calls for a

strong command of programming concepts and procedures and web development

experience.

Based on the concepts of Fabisiak (2020), the following code is an example of a

RESTful API for creating and reading records using Python and the Flask framework:

2 | P a g e

1. Installing Flask and Flask_RESTful

pip install Flask

pip install Flask-RESTful

2. Create and initialise the file

"""Import modules"""
from flask import Flask
from flask_restful import Resource, Api, reqparse

app = Flask(__name__)
api = Api(app)

BOOKS = {}

Sample data
books = [
 {"id": 1, "title": "Software Architecture with Python", "author": "Anand Balachandran Pillai"},
 {"id": 2, "title": "Python 3 Object-Oriented Programming", "author": "Dusty Phillips"},
]

Books List class
class BooksList(Resource):
 """methods get"""
 def get(self):
 """Method that returns available books"""
 return BOOKS

 def post(self):
 """Method to add new books """
 parser = reqparse.RequestParser()
 parser.add_argument("title")
 parser.add_argument("author")
 args = parser.parse_args()
 book_id = str(int(max(BOOKS.keys()) if BOOKS else 0) + 1)
 BOOKS[book_id] = {
 "title": args["title"],
 "author": args["author"],
 }
 return BOOKS[book_id], 201

api.add_resource(BooksList, '/books/')

Book class
class Book(Resource):
 def get(self, book_id):
 """Books ID"""
 if book_id in BOOKS:
 return BOOKS[book_id]
 return "Not found", 404

 def put(self, book_id):
 """Method to update books id"""
 if book_id not in BOOKS:
 return "Record not found", 404
 parser = reqparse.RequestParser()

3 | P a g e

 parser.add_argument("title")
 parser.add_argument("author")
 args = parser.parse_args()
 book = BOOKS[book_id]
 book["title"] = args["title"] if args["title"] is not None else book["title"]
 book["author"] = args["author"] if args["author"] is not None else book["author"]
 return book, 200

 def delete(self, book_id):
 """Delete method to delete existent book"""
 if book_id in BOOKS:
 del BOOKS[book_id]
 return '', 204
 return "Not found", 404

api.add_resource(Book, '/book/<string:book_id>')

if __name__ == "__main__":
 app.run(debug=True)

3. Output:

C:\Users\hcham\anaconda3\envs\pythonProject-SSD\python.exe
C:\Users\hcham\PycharmProjects\pythonProject-SSD\record_api.py
 Serving Flask app 'record_api'
 Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production
WSGI server instead.
 Running on http://127.0.0.1:5000
Press CTRL+C to quit
 Restarting with stat
 Debugger is active!
 Debugger PIN: 251-742-674

2. Become familiar with the capabilities of Python’s flask library.

Flask is a Python web framework that enables developers to develop web applications

with complete control over data access quickly. It provides simplified REST API

development, versatility for various projects, minimal boilerplate code, essential

components, and extensibility through Flask extensions (Agrawal, 2021). Therefore,

Webcrome Software (2023) states that Flask provides the tools and libraries to build

web applications without imposing specific patterns or structures. For instance, here

4 | P a g e

are some of the critical capabilities and features of Flask based on ideas of Ibrar

(2023):

1. Starting with Flask: To build a web app with Flask, first install Flask using pip, the

Python package manager.

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

if __name__ == '__main__':
 app.run()

2. Routing: Flask provides an elegant way to define routes using decorators. It also

supports dynamic routing through URL pattern parameters:

@app.route('/user/<username>')
def show_user_profile(username):
 return f'User: {username}'

3. Templates: Flask includes a templating that allows the creation of dynamic HTML

templates for rendering data:

@app.route('/template')
def render_template_example():
 return render_template('template.html', name='John')

4. Response Handling: Flask simplifies handling form input by providing a response

object and request.form dictionary:

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/form', methods=['GET', 'POST'])
def form_example():
 if request.method == 'POST':
 name = request.form['name']

5 | P a g e

 return f'Hello, {name}!'
 return render_template('form.html')

if __name__ == '__main__':
 app.run()

In addition, Webcrome Software (2023) highlight that the Flask micro web framework

provides the essentials for building web applications without imposing a strict structure

or set of tools. The minimalist approach allows developers to choose the necessary

components while keeping the framework lightweight. Key features include minimalist

design, modularity, simple routing mechanism, Jinja2 templates, built-on Werkzeug

WSGI toolkit, RESTful support, vibrant community, and lightweight design. However,

developers often use more full-featured web frameworks like Django for larger and

more complex applications, according to Majdak (2023). On the other hand, Flask is

an excellent choice for smaller applications or when specific libraries are needed due

to its lightweight nature, making it more minimalist and potentially faster.

3. Design an ontology which can be used in standardised service

deployments.

Ontology formally represents knowledge that defines concepts and their relationships

in a domain. It is used to share and reuse knowledge and facilitate communication and

reasoning among people or computer systems. Ontologies use a graph model, where

nodes represent concepts and edges represent relationships. They provide

standardisation in representing and sharing knowledge, improving communication and

collaboration across different organisations and systems (graph.build, N.D.).

According to Hara Gopal & Bharati (2017), service ontology is a valuable tool for

creating end products or services by combining goods and services. It is a component-

6 | P a g e

based description of services that streamlines the electronic design and production of

services. Service ontology involves conceptualising the service, identified by a service

name and description and organised into three layers: top-level, domain knowledge

level, and concrete deck. The generic service ontology is further categorised into three

top-level ontological distinctions: the customer-value perspective, the supply-side

perspective, and the joint operationalisation of these viewpoints in the actual service

production process.

Furthermore, W3-Org (2004) provided an Upper Ontology for Services, which aims to

provide users with vital information about a web service's functionality, usage, and

interaction methods. The ServiceProfile describes the providers' services and the

requests' needs. It consists of provider contact information, functional description of

the service, and service properties.

 Overview of an OWL-S Description (W3-Org, 2004)

Gruber proposed modelling ontologies using frames and first-order logic. He identified

five components: classes, relations, functions, formal axioms and instances. Classes

represent concepts, associations connect ideas, functions compute values, standard

axioms define knowledge that cannot be described otherwise, and instances represent

individual ontology elements (CORDIS, 2022).

To establish a standardised ontology for service deployments, we can adhere to the

guidelines proposed by (Slimani, N.D.) by following these steps:

7 | P a g e

1. Conduct a thorough domain analysis to identify the crucial concepts and their

interrelationships. This involves identifying different types of services that can be

deployed, components of a service deployment, and the associations between these

elements.

2. Utilize axioms to formulate logical statements that explain the relationships between

the concepts within the domain. For instance, we could define an axiom that states that

a service deployment must have at least one service component.

3. Categorize the concepts and relationships into a hierarchy to enhance the ontology's

modularity and reusability. For example, we could have a top-level category for

"Service Deployment" and subcategories for "Service Component," "Infrastructure

Component," and "Configuration."

4. Assign unique identifiers to all the ontology concepts and relationships to ensure

they are referred to unambiguously.

5. Document the ontology by providing comprehensive descriptions of the concepts

and relationships and examples of their application. This step guarantees that the

ontology is easily comprehended and helpful to others.

For instance, below is an outline example of an ontology for standardised service

deployments based on the ideas of Chamekh & Le Mouël (2007):

Top-level concepts:

• Service

• Execution platform

• Semantic context

• Dynamic deployment

8 | P a g e

Sub-concepts:

• Service profile (serviceName, textDescription, IOPEs)

• Process model (composite process, atomic process)

• Device profile

• Deployment strategy (OptimizedDeployment, LocationTrackingDeployment,

UserCustomizedDeployment)

Relationships:

• Service has a semantic description

• Execution platform has a semantic description

• Semantic context describes services and execution platforms

• Dynamic deployment uses semantic descriptions to deploy services to

execution platforms

• Service profile describes a service

• Process model describes a service

• Device profile describes an execution platform

• Deployment strategy uses semantic descriptions to deploy services to execution

platforms

9 | P a g e

References

Lutkevich, B. & Nolle, T. (N.D.). What Is an API (Application Program

Interface)? [online] SearchAppArchitecture. Available at:

https://www.techtarget.com/searchapparchitecture/definition/application-program-

interface-API.

Gillis, A. S (N.D.). What is REST API (RESTful API)? [online] Available at:

https://www.techtarget.com/searchapparchitecture/definition/RESTful-API.

Fabisiak, R. (2020). Create a simple REST API with Python and Flask in 5 minutes.

[online] Duomly - Programming courses online. Available at:

https://medium.com/duomly-blockchain-online-courses/how-to-create-a-simple-rest-

api-with-python-and-flask-in-5-minutes-94bb88f74a23.

Agrawal, R. (2021). What is Flask | A Comprehensive Guide on using Flask for Data

Science. [online] Analytics Vidhya. Available at:

https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-using-

flask-for-data-science/.

Software, W. (2023). WHAT IS FLASK IN PYTHON? [online] Medium. Available at:

https://medium.com/@inquiry_85245/what-is-flask-in-python-911e90fcfa61.

Ibrar, M. (2023). Building Web Applications with Flask: A Pythonic Journey. [online]

Available at: https://dev.to/moiz697/building-web-applications-with-flask-a-pythonic-

journey-2nc.

Majdak, M. (2023). Flask vs Django: Different Python Web Frameworks. [online]

Available at: https://startup-house.com/blog/flask-v-django.

https://www.techtarget.com/searchapparchitecture/definition/application-program-interface-API
https://www.techtarget.com/searchapparchitecture/definition/application-program-interface-API
https://www.techtarget.com/searchapparchitecture/definition/RESTful-API
https://medium.com/duomly-blockchain-online-courses/how-to-create-a-simple-rest-api-with-python-and-flask-in-5-minutes-94bb88f74a23
https://medium.com/duomly-blockchain-online-courses/how-to-create-a-simple-rest-api-with-python-and-flask-in-5-minutes-94bb88f74a23
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-using-flask-for-data-science/
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-using-flask-for-data-science/
https://medium.com/@inquiry_85245/what-is-flask-in-python-911e90fcfa61
https://dev.to/moiz697/building-web-applications-with-flask-a-pythonic-journey-2nc
https://dev.to/moiz697/building-web-applications-with-flask-a-pythonic-journey-2nc
https://startup-house.com/blog/flask-v-django

10 | P a g e

graph.build (N.D.). Ontology in Graph Models and Knowledge Graphs. [online]

Available at: https://graph.build/resources/ontology.

Hara Gopal, V., & Bharati, K. (2017). An Overview of Service Ontology in Semantic

Service Search. International Journal of Applied Engineering Research, [online] 12,

pp.5905–5909. Available at:

https://www.ripublication.com/ijaer17/ijaerv12n16_64.pdf.

W3.org. (2023). OWL-S: Semantic Markup for Web Services. [online] Available at:

https://www.w3.org/submissions/OWL-S/#4.

CORDIS, cordis.europa.eu (2022). Ecosystem for Collaborative Manufacturing

Processes – Intra- and Interfactory Integration and Automation. [online] CORDIS |

European Commission. Available at: https://cordis.europa.eu/project/id/723145.

Vob, J. (2013). The Service Ontology. [online] Available at: https://dini-ag-

kim.github.io/service-ontology/service.html.

Slimani, T. (N.D.). A Study Investigating Typical Concepts and Guidelines for

Ontology Building. [online] Available at:

https://arxiv.org/ftp/arxiv/papers/1509/1509.05434.pdf.

Hajer Chamekh and Frédéric Le Mouël (2007). An Ontology-based Approach to

Semantically Deploy Services in Pervasive Environments.

doi:https://doi.org/10.1109/perser.2007.4283947.

https://graph.build/resources/ontology
https://www.ripublication.com/ijaer17/ijaerv12n16_64.pdf
https://www.w3.org/submissions/OWL-S/#4
https://cordis.europa.eu/project/id/723145
https://dini-ag-kim.github.io/service-ontology/service.html
https://dini-ag-kim.github.io/service-ontology/service.html
https://arxiv.org/ftp/arxiv/papers/1509/1509.05434.pdf

