
1 | P a g e

Unit 7 – Codio:

1. Exploring a simple Python shell

In this session, you will create a command shell in Python and then run it and answer

questions about it. You can use the Jupyter Notebook space in Codio for your work.

Review the blogs at Praka (2018) and Szabo (n.d.) and then create a CLI/ shell that

implements the following:

• When you enter the command LIST, it lists the contents of the current

directory

• The ADD command will add the following two numbers together and provide

the result

• The HELP command provides a list of commands available

• The EXIT command exits the shell

Add suitable comments to your code and add the program to your e-portfolio. Be

prepared to demonstrate it in the seminar session next week.

Run the shell you have created, try a few commands and then answer the questions

below. Be prepared to discuss your answers in the seminar.

• What are the two main security vulnerabilities with your shell?

• What is one recommendation you would make to increase the security of the

shell?

• Add a section to your e-portfolio that provides a (pseudo)code example of

changes you would make to the shell to improve its security.

Remember to also record your results, ideas and team discussions in your e-portfolio.

Learning Outcomes

• Identify and manage security risks as part of a software development project.

• Critically analyse development problems and determine appropriate

methodologies, tools and techniques (including program design and

development) to solve them.

• Design and develop/adapt computer programs and to produce a solution

that meets the design brief and critically evaluate solutions that are

produced.

https://www.my-course.co.uk/course/view.php?id=10405§ion=6

2 | P a g e

Python is a powerful programming language useful for workflow automation and

scripting. It includes several useful tools from the Python Standard Library. System

administrators frequently use shell commands and can run using Python. Python can

complete various traditionally carried-out jobs using batch or bash files (Janakiev,

2019).

Below is an example of a command shell in Python to execute specific commands,

such as LIST, ADD, HELP, and EXIT, based on the ideas of Praka (2018) and (Arbitrio,

N.D):

"""
This is a CLI/shell written in Python
that implements the following commands:
LIST: Lists the contents of the current directory.
ADD: Adds two numbers together and provides the result.
HELP: Provides a list of commands available.
EXIT: Exits the shell.
"""

import cmd
import os

class MyPrompt(cmd.Cmd):
 """
 Display a welcome message when
 the application is launched
 """
 prompt = "myshell> "
 intro = "Welcome to MY shell! Type help to list commands"

 def __init__(self):
 super().__init__()
 self.current_dir = os.getcwd()

 def do_LIST(self, args):
 """List the contents of the current directory."""
 print(os.listdir(self.current_dir))

 def do_ADD(self, args):
 """Add two numbers together and provide the result."""
 numbers = args.split(" ")
 num1 = input('Enter first number: ')
 num2 = input('Enter second number: ')

 # Add two numbers
 sum = float(num1) + float(num2)

 # Display the sum
 print('The result is {2}'.format(num1, num2, sum))

3 | P a g e

 def do_HELP(self, args):
 """Provide a list of available commands."""
 print("Available commands:")
 print("LIST: List the contents of the current directory.")
 print("ADD: Add two numbers together and provide the result.")
 print("HELP: Provide a list of available commands.")
 print("EXIT: Exit the shell.")

 def do_EXIT(self, args):
 """Exit the shell."""
 print("Goodbye!")
 exit()

if __name__ == "__main__":
 prompt = MyPrompt()
 prompt.cmdloop()

Output:

C:\Users\hcham\anaconda3\envs\pythonProject-SSD\python.exe
C:\Users\hcham\PycharmProjects\pythonProject-SSD\shell-3.py

Welcome to MY shell! Type help to list commands
myshell> help

Documented commands (type help <topic>):
==
ADD EXIT HELP LIST help

myshell> help ADD
Add two numbers together and provide the result.
myshell> ADD
Enter the first number: 1
Enter the second number: 1
The result is 2.0
myshell> help LIST
List the contents of the current directory.
myshell> LIST
['.idea', 'hanoi_pygame.py', 'recursion.py', 'regex.py', 'shell-1.py', 'shell-2.py', 'shell-3.py', 'shell.py']
myshell> help HELP
Provide a list of available commands.
myshell> HELP
Available commands:
LIST: List the contents of the current directory.
ADD: Add two numbers together and provide the result.
HELP: Provide a list of available commands.
EXIT: Exit the shell.
myshell> help EXIT
Exit the shell.
myshell> EXIT
Goodbye!

Process finished with exit code 0

4 | P a g e

1. What are the two main security vulnerabilities with your shell?

Application security can be compromised by a harmful technique called command

injection, which involves injecting malicious data into the server and executing it. Even

languages known for their secure design, such as Python, can be vulnerable to this

attack. Using unsanitised user input creates a vulnerability that can be exploited in this

manner (StackHawk, 2021).

My code lacks input validation and has two security vulnerabilities: command injection

and input validation.

2. What is one recommendation you would make to increase the security of

the shell?

Zhong (N.D.) states that command injection is an attack whereby an attacker can

execute arbitrary commands on a host operating system through a vulnerable

application. This occurs when an application fails to validate user inputs and passes

them on to a shell. The attacker's commands are then executed using the same

privileges as the application. Unlike code injection, command injection doesn't involve

injecting new code but exploits the application's existing functionality.

To increase the security of my code, I would change the input validation, which is

crucial for safety, preventing unintended input, modified control flow, and arbitrary code

execution. It involves filtering, encoding/escaping, and checking data properties such

as well-formedness, consistency, and adherence to rules. As CWE (2009) states,

developers must differentiate input validation from output escaping to avoid

vulnerabilities caused by property derivation errors.

5 | P a g e

3. Add a section to your e-portfolio that provides a (pseudo)code example

of changes you would make to the shell to improve its security.

As Zhu (2023) suggested, a way to improve app security is by validating and sanitising

user inputs before execution. This approach can prevent malicious attacks such as

command injection.

Below is an example of the pseudo(code) changes that can be added to improve

security:

def do_ADD(self, args):
 # Input validation
 try:
 num1 = float(args.split(" ")[0])
 num2 = float(args.split(" ")[1])
 except ValueError:
 print("Invalid input.")
 return

 # User input sanitiser
 num1 = str(num1).strip()
 num2 = str(num2).strip()

 # Execute the command.
 result = num1 + num2
 print(result)

4. Developing an API for a Distributed Environment

In this session, you will create a RESTful API which can be used to create and delete

user records. Responses to the questions should be recorded in your e-portfolio.

You are advised to use these techniques to create an API for your team’s submission

in Unit 11 and be prepared to demonstrate it during next week’s seminar (Unit 10).

Remember that you can arrange a session with the tutor during office hours for more

support, if required.

Using the Jupyter Notebook workspace, create a file named api.py and copy the

following code into it (a copy is provided for upload to Codio/GitHub): You can install

https://www.my-course.co.uk/course/view.php?id=10405§ion=6
https://realpython.com/jupyter-notebook-introduction/

6 | P a g e

Jupyter Notebook on your local machine following these instructions or via

the University of Essex Software Hub.

#source of code: Codeburst

from flask import Flask
from flask_restful import Api, Resource, reqparse

app = Flask(__name__)
api = Api(app)

users = [
 {
 "name": "James",
 "age": 30,
 "occupation": "Network Engineer"
 },
 {
 "name": "Ann",
 "age": 32,
 "occupation": "Doctor"
 },
 {
 "name": "Jason",
 "age": 22,
 "occupation": "Web Developer"
 }
]

class User(Resource):
 def get(self, name):
 for user in users:
 if(name == user["name"]):
 return user, 200
 return "User not found", 404

 def post(self, name):
 parser = reqparse.RequestParser()
 parser.add_argument("age")
 parser.add_argument("occupation")
 args = parser.parse_args()

 for user in users:
 if(name == user["name"]):
 return "User with name {} already exists".format(name), 400

 user = {
 "name": name,
 "age": args["age"],
 "occupation": args["occupation"]
 }
 users.append(user)
 return user, 201

 def put(self, name):
 parser = reqparse.RequestParser()
 parser.add_argument("age")

https://realpython.com/jupyter-notebook-introduction/
https://software.essex.ac.uk/
https://codeburst.io/this-is-how-easy-it-is-to-create-a-rest-api-8a25122ab1f3

7 | P a g e

 parser.add_argument("occupation")
 args = parser.parse_args()

 for user in users:
 if(name == user["name"]):
 user["age"] = args["age"]
 user["occupation"] = args["occupation"]
 return user, 200

 user = {
 "name": name,
 "age": args["age"],
 "occupation": args["occupation"]
 }
 users.append(user)
 return user, 201

 def delete(self, name):
 global users
 users = [user for user in users if user["name"] != name]
 return "{} is deleted.".format(name), 200

api.add_resource(User, "/user/<string:name>")

app.run(debug=True)

Question 1

Run the API.py code. Take a screenshot of the terminal output. What command

did you use to compile and run the code?

To compile and run the code, I used python3 api.py, as shown in the image below:

8 | P a g e

Question 2

Run the following command at the terminal prompt:

w3m http://127.0.0.1:5000/user/Ann

What happens when this command is run, and why?

When I execute the command w3m, it downloads the content of the user Ann, allowing

me to browse the content in text format, as shown in the images below:

Question 3

Run the following command at the terminal prompt:

w3m http://127.0.0.1:5000/user/Adam

What happens when this command is run, and why?

When I tried to browse the content of user Adam using the w3m command, the result

was "User not found" because the user Adam does not exist, as shown in the images

below:

http://127.0.0.1:5000/user/Ann
http://127.0.0.1:5000/user/Adam

9 | P a g e

Question 4

What capability is achieved by the flask library?

According to Smyth (2018), flask maps HTTP requests to Python functions. When we

connect to the Flask server, it checks if there is a match between the path provided

and a defined function. Flask displays the returned result in the browser. In this case,

it returns an HTML markup for a home page welcoming visitors to the site hosting our

API.

Flask is a lightweight and flexible microweb framework for Python, allowing developers

to quickly build web apps and APIs (Dyouri, 2020).

In addition, as highlighted by Murugan (2023), Flask boasts a built-in development

server, support for unit testing and RESTful request dispatching, secure cookies, and

compliance with WSGI (Web Server Gateway Interface). Its flexibility and extensibility

have made it a favoured option. Still, it has a few drawbacks, such as a challenging

10 | P a g e

learning curve, limited functionality, lack of built-in database integration, and potential

security vulnerabilities.

Architecture Evolution Activity

Based on your reading this week, could you write a section that might be appended

to this paper, Salah et al. 2016, presenting the next phase of evolution history, from

microservices to the technologies commonly used today?

My findings:

Throughout history, humans have consistently innovated new forms of communication

- from smoke signals to emails. The invention of the electric telegraph in 1831

represented a significant breakthrough in communication technology, but now digital

methods have taken over. Today, we tend to avoid handwriting letters or making phone

calls, instead opting to communicate via email, FaceTime, Zoom, or Google Hangouts.

The amount of progress that has been made in the realm of communication is truly

remarkable (Rogers, 2019).

Today's businesses face the challenge of meeting customer demands while navigating

complex technologies. Up to 45% of employee activities can be automated, leading to

a shift in the definition of "services." Top performance can be achieved through

mergers, investments, resource allocation, and productivity improvements. A next-gen

model must capitalise on digital services to support speed, agility, efficiency, and

precision (McKinsey, 2017).

Salah et al. (2016) state that communication networks have led to the development of

distributed software systems offering real-time services to meet growing user

demands. Different paradigms like Client-Server, SOA, and Microservices have

emerged to structure these applications based on their unique needs, offering efficient

11 | P a g e

ways to handle requests, integrate systems, and break down complex applications for

greater flexibility and faster deployment.

Hence, microservices offer benefits like software reuse, improved availability, and

continuous delivery (Assunção et al. 2023). However, managing knowledge about their

dependencies can be challenging, leading to unnecessary costs and design flaws.

Microservices typically co-evolve with each other, driven by various factors such as

business requirements, technical dependencies, and organisational changes.

12 | P a g e

References:

Janakiev, N. (2019). How to Execute Shell Commands with Python. [online]

Parametric Thoughts. Available at: https://janakiev.com/blog/python-shell-

commands/.

Praka, D. (2018). Write a shell in Python — Danish Prakash. [online] Available at:

https://danishpraka.sh/posts/shell-in-python/.

Arbitrio, E. (N.D). Create your custom interactive shell with python | Ernesto Arbitrio.

[online] Available at: https://ernesto.arbitrio.fyi/posts/create-yout-own-interactive-

shell-with-python/.

StackHawk (2021). Command Injection in Python: Examples and Prevention. [online]

Available at: https://www.stackhawk.com/blog/command-injection-python/

Zhong, W. (N.D.). Command Injection | OWASP. [online] owasp.org. Available at:

https://owasp.org/www-community/attacks/Command_Injection.

CWE (2009). CWE - CWE-20: Improper Input Validation (3.4.1). [online] Available at:

https://cwe.mitre.org/data/definitions/20.html.

Zhu, M (2023). User input sanitization and validation | TinyMCE. [online] Available at:

https://www.tiny.cloud/blog/input-sanitization/

PHO (2023). Making a simple calculator python. [online] Available at:

https://stackoverflow.com/questions/75677334/making-a-simple-calculator-python

Smyth, P. (2018). Creating Web APIs with Python and Flask. Programming Historian.

[online] Available at: https://programminghistorian.org/en/lessons/creating-apis-with-

python-and-flask.

https://janakiev.com/blog/python-shell-commands/
https://janakiev.com/blog/python-shell-commands/
https://danishpraka.sh/posts/shell-in-python/
https://ernesto.arbitrio.fyi/posts/create-yout-own-interactive-shell-with-python/
https://ernesto.arbitrio.fyi/posts/create-yout-own-interactive-shell-with-python/
https://www.stackhawk.com/blog/command-injection-python/
https://owasp.org/www-community/attacks/Command_Injection
https://cwe.mitre.org/data/definitions/20.html
https://www.tiny.cloud/blog/input-sanitization/
https://programminghistorian.org/en/lessons/creating-apis-with-python-and-flask
https://programminghistorian.org/en/lessons/creating-apis-with-python-and-flask

13 | P a g e

Dyouri, A. (2020). How To Make a Web Application Using Flask in Python 3. [online]

DigitalOcean. Available at: https://www.digitalocean.com/community/tutorials/how-to-

make-a-web-application-using-flask-in-python-3.

Murugan, S. (2023). Top Python REST API Frameworks in 2023. [online] Available

at: https://www.browserstack.com/guide/top-python-rest-api-frameworks.

Rogers, S. (2019). The Role Of Technology In The Evolution Of Communication.

[online] Forbes. Available at: https://www.forbes.com/sites/solrogers/2019/10/15/the-

role-of-technology-in-the-evolution-of-communication/.

McKinsey (2017). McKinsey on Digital Services Introducing the next-generation

operating model. [online] Available at:

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20

Digital/Our%20Insights/Introducing%20the%20next-

generation%20operating%20model/Introducing-the-next-gen-operating-model.ashx.

Salah, T., Jamal Zemerly, M., Chan Yeob Yeun, Al-Qutayri, M. & Al-Hammadi, Y.

(2016). The evolution of distributed systems towards microservices architecture.

[online] IEEE Xplore. doi:https://doi.org/10.1109/ICITST.2016.7856721.

Assunção, W.K.G., Krüger, J., Mosser, S. & Selaoui, S. (2023). How do

microservices evolve? An empirical analysis of changes in open-source microservice

repositories. Journal of Systems and Software, [online] 204, p.111788.

doi:https://doi.org/10.1016/j.jss.2023.111788.

https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
https://www.browserstack.com/guide/top-python-rest-api-frameworks
https://www.forbes.com/sites/solrogers/2019/10/15/the-role-of-technology-in-the-evolution-of-communication/
https://www.forbes.com/sites/solrogers/2019/10/15/the-role-of-technology-in-the-evolution-of-communication/
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Introducing%20the%20next-generation%20operating%20model/Introducing-the-next-gen-operating-model.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Introducing%20the%20next-generation%20operating%20model/Introducing-the-next-gen-operating-model.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Introducing%20the%20next-generation%20operating%20model/Introducing-the-next-gen-operating-model.ashx

14 | P a g e

Unit 7 – Reflection:

Throughout unit 7 studies, I have gained a wealth of knowledge regarding operating

systems' various types and functions and deepened my understanding of different

processes. In particular, I have learned critical approaches that can be employed to

enhance the security of operating systems, which is of utmost importance to me as an

infrastructure engineer who has extensive experience working with operating systems.

Furthermore, I have explored the differences between various virtualisation

approaches, gaining valuable insights into their practical applications. I have had the

opportunity to engage in Codio activities, where I studied the practical applications of

libraries in real-world scenarios, including a challenging Python shell.

One of the week's highlights was the lecture on operating system security, which

provided an excellent recapitulation of the operating system's history and evolution. It

also touched on the various legal, ethical, social, and professional considerations

surrounding the development of operating systems. Throughout my experience

working on my shell code this week, I encountered some challenges that proved quite

daunting, but I was determined to push through and eventually overcame those

obstacles. This week's learning proved extremely valuable, as I gained essential

knowledge and skills that will undoubtedly enhance my work in the future. Specifically,

I now better understand concepts such as creating a command shell in Python, which

will be crucial in my future coding endeavours. Overall, while it was a challenging week,

I am grateful for the immense growth I experienced.

