
1 | P a g e

Unit 6: Using Linters to Support Python Testing

1. Be familiar with using linters to support quality Python code development.

To enhance code quality, it is essential to establish clear parameters. Superior code

performs its intended function flawlessly, is devoid of defects, and is easily

understandable, maintainable, and expandable. Substandard code can result in unmet

requirements, deficiencies, and complications in adding new features. Improving code

quality can help to save time and avoid complications. While achieving quality is

subjective, adhering to a consistent code style is a promising first step (VanTol, 2018).

Linters are programs that check code quality by displaying errors and warnings. They

help prevent bugs, improve readability, and make code cleaner. However, they can

return false positives and be time-consuming (Milaszewski, 2022).

As a result, Buczyński (2023) states that Linters are potent tools that analyse Python

code to identify syntax errors, style inconsistencies, and potential bugs, enforcing best

practices and promoting consistent coding across projects. Using linters enhances

code quality, improves code readability, detects errors early, speeds up code reviews,

and encourages collaboration. The most popular Python linters include Pylint, Flake8,

MyPy, Pyright, isort, pydocstyle, Safety, Bandit, Xenon, and Radon. Integrating these

linters ensures consistent compliance with PEP 8 standards.

As Pillai (2017) explained, static code analysis tools can gain valuable insights into

various aspects of your code, such as its complexity, modifiability, and readability.

Python offers multiple third-party tools that can measure static properties, such as

compliance with coding standards, code complexity metrics, errors and logic issues,

and code smells. Within the Python ecosystem, some of the most popular static

analysis tools include:

2 | P a g e

• Pylint: Pylint is a static Python code checker that can identify coding errors,

code smells, and style mistakes. Pylint employs a PEP-8-like style. The more

recent Pylint versions can now produce reports and offer statistics on code

complexity. Before being checked by Pylint, the code must run.

• Pyflakes: Compared to Pylint, Pyflakes is a relatively recent endeavour. In

contrast to Pylint, it does not require running the code before checking for flaws.

Pyflakes evaluates the logic of the code; it does not look for coding style

mistakes.

• McCabe: It is a script that verifies your code's McCabe complexity and prints a

report on it.

• Pycodestyle: Pycodestyle is a program that verifies the Python code by some

PEP-8 standards. This device was formerly known as PEP-8.

• Flake8: Flake8 is a wrapper for the Pyflakes, McCabe, and Pycodestyle tools

and can carry out various tests, including those offered by these tools.

2. Compare and contrast the outputs from linters to recognise their

relevance and applicability in different development and testing

scenarios.

A linter is a helpful tool that scans the code for potential issues and highlights them.

Developers widely use it to spot errors and promptly enhance the code's quality. While

initially designed for optimising compilers, linters are now compatible with all

programming languages (Walters, 2022).

Linting is beneficial for software projects, and here are four reasons, according to

Wanjala (2023):

1. Identifies Programming Errors: Linters can detect specific programming errors

that may have been missed while coding. They can quickly identify and warn about

unused variables, undefined functions, suspicious code constructs, potential bugs,

syntax errors, and other issues that may arise. Linters can even fix specific problems

in the code automatically, like adding a missing semicolon at the end of the statement

in the code.

3 | P a g e

2. Enforces Coding Standards: Developers may have different preferences and

styles when writing code, which can cause issues in collaborative projects. Linters can

help enforce specific coding styles that every developer should follow. They have strict

rules that ensure consistency in the code. It can be customised as a linter's rules to

follow the team's preferences or existing style guides.

3. Improves Code Quality: By ensuring consistency in the code and catching potential

issues and errors early on, linting helps improve the quality of the code. Linters can

also suggest best practices while coding, like removing unused variables without

purpose in your code.

4. Helps Write Secure Code: Security is crucial in software development. Some linters

can detect and warn against potential security issues.

The utility and relevance of linter outputs can fluctuate depending on the particular

development and testing context. To elaborate, linters prove most useful during

development by flagging potential bugs and enforcing uniform coding practices. During

testing, linters are ideal for ensuring the code meets all requirements and catching any

bugs that unit tests may have overlooked (CodiLime, 2023).

Here are some examples of how to use linter outputs in development and testing:

• A developer can use a linter to identify any potential bugs in their code before

they submit it for review.

• A QA engineer can use a linter to verify that the code meets all the requirements

and identify any potential bugs the unit tests may have missed.

• A product manager can use a linter to ensure that the code is written in a way

that is easy to understand and maintain.

4 | P a g e

3. Develop Python code that is error-free, consistent in its design, and

considered high quality according to common Python standards.

Following Nemesis's (2023) best practices for error-free and consistent Python code

quality is advisable. These practices include:

- Adhering to the PEP 8 style guide: This widely accepted style manual for Python

programming provides recommendations that make the code easier to understand and

more consistent. Some code editors and IDEs can automatically check the code

against PEP 8 standards.

- Using function type hints: Specifying the parameters a function expects and what

it returns can improve code quality and readability.

- Avoiding global variables: Function arguments and return values are generally

preferred over global variables, making the code harder to read and test.

- Avoiding hardcoded values: Configuration files or constants should be used

instead of hardcoded values, which can make the code less flexible and harder to

maintain.

- Publishing docstrings: Providing informative docstrings at the start of a module,

class, or function can make maintaining the code easier and help others understand

how to use it.

- Creating tests: Automated tests can help to identify flaws and ensure the code works

as intended. Python supports many well-known testing frameworks and unit testing.

- Using list comprehension: This feature allows the creation of Python lists clearly

and concisely, resulting in faster and more readable code.

5 | P a g e

Here is an example of a common Python code that is error-free, well-documented, and

easy to understand:

def greet(name):
 """Greets the user by name.

 Args:
 name: The name of the user.

 Returns:
 A greeting string.
 """

 greeting = f"Hello, {name}!"
 print(greeting)
 return greeting

Example:

user_name = "Hainadine"
greeting = greet(user_name)

Output:
Hello, Hainadine!

6 | P a g e

References:

VanTol, A. (2018). Python Code Quality: Tools & Best Practices – Real Python.

[online] realpython.com. Available at: https://realpython.com/python-code-

quality/#what-is-code-quality

Milaszewski, L. (2022). Improve your Python code with Python linters | DS Stream.

[online] Data Analytics. Available at: https://dsstream.com/improve-your-python-code-

quality/#.

Buczyński, R. (2023). Best practices for Python code quality - linters. [online]

Available at: https://codilime.com/blog/python-code-quality-linters/.

Pillai, A.B. (2017). Software Architecture with Python. [online] Google Books. Packt

Publishing Ltd. Available at:

https://www.google.co.uk/books/edition/Software_Architecture_with_Python/AUIwDw

AAQBAJ?hl=en&gbpv=1&dq=software+architecture+with+python%2Banand+balach

andran+pillai+&pg=PP1&printsec=frontcover.

Walters, A. (2022). What Is a Linter? - Everything You Need to Know - testRigor.

[online] testRigor AI-Based Automated Testing Tool. Available at:

https://testrigor.com/blog/what-is-a-linter/

Wanjala, A. (2023). What Is Linting and Why Is It Important for Your Programming

Projects? [online] MUO. Available at: https://www.makeuseof.com/what-is-linting/

CodiLime. (2023). Best practices for Python code quality - linters. [online] Available

at: https://codilime.com/blog/python-code-quality-linters/.

https://realpython.com/python-code-quality/#what-is-code-quality
https://realpython.com/python-code-quality/#what-is-code-quality
https://dsstream.com/improve-your-python-code-quality/
https://dsstream.com/improve-your-python-code-quality/
https://codilime.com/blog/python-code-quality-linters/
https://www.google.co.uk/books/edition/Software_Architecture_with_Python/AUIwDwAAQBAJ?hl=en&gbpv=1&dq=software+architecture+with+python%2Banand+balachandran+pillai+&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/Software_Architecture_with_Python/AUIwDwAAQBAJ?hl=en&gbpv=1&dq=software+architecture+with+python%2Banand+balachandran+pillai+&pg=PP1&printsec=frontcover
https://www.google.co.uk/books/edition/Software_Architecture_with_Python/AUIwDwAAQBAJ?hl=en&gbpv=1&dq=software+architecture+with+python%2Banand+balachandran+pillai+&pg=PP1&printsec=frontcover
https://testrigor.com/blog/what-is-a-linter/
https://www.makeuseof.com/what-is-linting/
https://codilime.com/blog/python-code-quality-linters/

7 | P a g e

Nemesis, P.C. (2023). Improving Code Quality in Python. [online] ILLUMINATION.

Available at: https://medium.com/illumination/improving-code-quality-in-python-

cc7b21bd92e8

https://medium.com/illumination/improving-code-quality-in-python-cc7b21bd92e8
https://medium.com/illumination/improving-code-quality-in-python-cc7b21bd92e8

