
1 | P a g e

Portfolio Component: Exploring the Cyclomatic Complexity’s Relevance Today

The Cyclomatic Complexity is commonly considered in modules on testing the

validity of code design today. However, in your opinion, should it be? Does it remain

relevant today? Specific to the focus of this module, is it appropriate to our quest to

develop secure software? Justify all opinions that support your argument and share

your responses with your team.

Teamwork

You can share your team responses with the tutor for formative feedback or discuss

them in next week’s seminar.

Learning Outcomes

• Identify and manage security risks as part of a software development project.

• Critically analyse development problems and determine appropriate

methodologies, tools and techniques (including program design and

development) to solve them.

• Systematically develop and implement the skills required to be an influential

development team member in a virtual professional environment, adopting

real-life perspectives on team roles and organisation.

My answers:

The measurement of the number of paths through code, known as Cyclomatic

complexity (CC), remains controversial within the industry despite its widespread use.

While academic research may not always consider practical applications, the industry

values straightforward and actionable metrics. In their article, Ebert & Cain (2016)

contend that CC has significant value as a metric. Ferrer et al. (2013) pointed out that

measuring time and cost in software development is essential; using metrics is

necessary for management control. For instance, assessing the complexity of software

components through CC analysis can effectively forecast high defect rates and testing

2 | P a g e

challenges. CC is a simple yet effective metric that can offer insights into enhancing

the overall quality of code. It can also closely align with the number of test cases

required for path coverage, ultimately providing immense value to developers and

project managers alike (Ferrer et al. 2013).

Software complexity can be directly evaluated through software attributes rather than

relying on indirect factors such as project milestones or system failures. Various

measures are available, ranging from straightforward to more specialised. Metrics

should be independent of implementation details such as source code formatting and

language syntax to ensure consistency across diverse projects and programming

languages. Cyclomatic complexity satisfies this requirement by gauging decision logic

within a function, irrespective of text formatting or programming language. Ideally,

complexity measures should define software prone to errors and difficult to

comprehend and provide strategies for managing it (Watson et al. 1996).

However, Shepperd (1988) states as more modules are added to a program, its

complexity can increase. Conversely, removing redundant code can decrease

complexity. However, the decision-counting metric used to measure complexity has

faced theoretical objections and neglected other vital factors. Despite this, it can still

help predict testing effort, error incidence, and code recall. Cyclomatic complexity, on

the other hand, has limitations as a general complexity metric due to differing

interpretations and a lack of an explicit model. Developing a complexity metric based

on program properties is a challenging task, and it may be more effective to derive

metrics from abstract notations and software design concepts. It's important to validate

any complexity metric to ensure it is reliable. McCabe's metric doubts its usefulness,

and constructing a complete model for a complexity metric is challenging given the

non-formal nature of the real world.

3 | P a g e

In my opinion, Cyclomatic Complexity should not be viewed as a cure-all solution.

While it can undoubtedly help flag possible issues, it is just one of many metrics to

consider when striving for secure coding practices. The relevance of Cyclomatic

Complexity today is debatable, with compelling arguments to be made for both sides.

Nonetheless, I maintain that it remains a valuable metric for enhancing software

quality, provided it is used with other metrics and its limitations are kept in mind.

In support of my objective to develop secure software, I believe cyclomatic complexity

remains pertinent today. As Brainhub (N.D.) highlights, measuring cyclomatic

complexity can enhance code quality, maintainability, and productivity. This helpful

practice also facilitates defect reduction and improves testing procedures by identifying

independent paths within the code. However, it is essential to note that excessive

cyclomatic complexity can render code incomprehensible and difficult to test, as

Brainhub (N.D.) cautions. This may indicate additional issues, such as unnecessary

conditional logic or excessive nesting, which could increase the likelihood of defects.

4 | P a g e

References:

Ferrer, J., Chicano, F. & Alba, E. (2013). Estimating software testing

complexity. Information and Software Technology, 55(12), pp.2125–2139.

doi:https://doi.org/10.1016/j.infsof.2013.07.007.

Ebert, C. and Cain, J. (2016). Cyclomatic Complexity. IEEE Software, 33(6), pp.27–

29. doi:https://doi.org/10.1109/ms.2016.147.

Watson, A.H., Wallace, D.R. & McCabe, T.J. (1996). Structured Testing: A Testing

Methodology Using the Cyclomatic Complexity Metric. [online] Google Books. U.S.

Department of Commerce, Technology Administration, National Institute of

Standards and Technology. Available at:

https://www.google.co.uk/books/edition/Structured_Testing/lysRzUZhc2QC?hl=en&g

bpv=1&dq=Computer+Systems+Technology%2BA+Testing+Methodology+Using+the

+Cyclomatic+Complexity+Metric&pg=PR10&printsec=frontcover [Accessed 9 Sep.

2023].

Shepperd, M. (1988). A critique of cyclomatic complexity as a software

metric. Software Engineering Journal, 3(2), p.30.

doi:https://doi.org/10.1049/sej.1988.0003.

Brainhub (N.D.). Streamlining the Code: Pros and Cons of Cyclomatic Complexity.

[online] Available at: https://brainhub.eu/library/measuring-cyclomatic-complexity.

https://www.google.co.uk/books/edition/Structured_Testing/lysRzUZhc2QC?hl=en&gbpv=1&dq=Computer+Systems+Technology%2BA+Testing+Methodology+Using+the+Cyclomatic+Complexity+Metric&pg=PR10&printsec=frontcover
https://www.google.co.uk/books/edition/Structured_Testing/lysRzUZhc2QC?hl=en&gbpv=1&dq=Computer+Systems+Technology%2BA+Testing+Methodology+Using+the+Cyclomatic+Complexity+Metric&pg=PR10&printsec=frontcover
https://www.google.co.uk/books/edition/Structured_Testing/lysRzUZhc2QC?hl=en&gbpv=1&dq=Computer+Systems+Technology%2BA+Testing+Methodology+Using+the+Cyclomatic+Complexity+Metric&pg=PR10&printsec=frontcover
https://brainhub.eu/library/measuring-cyclomatic-complexity

