
1 | P a g e

Unit 4: Exploring Programming Language Concepts

1. Explain how and when to use regular expressions in solutions.

Regular expressions process specific formats like dates, emails, and phone numbers.

However, there are nuances in the language that can lead to bugs. Few regular

expressions fail to compile, and some symbols have different meanings depending on

their location. Faulty regular expressions can cause incorrect behaviour or even crash

a program. Ensuring they are correct and not exploited to crash a server (Larson,

2006). Moreover, Larson & Kirk (2018) state that regular expressions are used in

programming to process input, validate web form data, and search for text. They can

be prone to errors due to their concise syntax and limited error checking at run-time.

Furthermore, regular expressions provide a flexible way to define patterns within

strings. Python's re-module has functions and methods for working with them, allowing

for complex text operations. Metacharacters specify different types of patterns

(Noteable, 2023).

For developers, mastering regular expressions (regex) can significantly enhance their

productivity when handling text processing. These patterns enable you to precisely

define, identify, or extract text, simplifying the task of locating and substituting specific

phrases and validating input data against the desired format. If you seek to tackle

programming challenges with maximum efficiency, investing time in learning how to

use regex is unquestionably worthwhile (Enyinna, 2022).

Regular expressions are powerful tools for identifying and manipulating text patterns.

They can validate form input, search and replace, and filter out unwanted information.

Applications include string matching, password validation, form validation, text search

and manipulation, working with URLs and URIs, search and replace in IDEs and text

2 | P a g e

editors, data extraction and scraping, and syntax highlighting. Regular expressions are

versatile and widely used in computer programming, data processing, text editing, and

web development.

2. Describe how and when to use recursion in solutions.

Recursion is a programming technique where a function solves a complex problem by

calling itself and breaking it down into smaller subproblems until a base case is

reached. It follows the principle of "divide and conquer" (Atta, 2023).

To effectively use recursion, GeeksforGeeks (2017) suggests following these steps:

Step 1 - Establish a base case: Identify the simplest scenario where the solution is

known or easily obtained. This will halt the recursion and prevent the function from

calling itself indefinitely.

Step 2 - Generate a recursive case: Identify the problem in terms of smaller sub-

problems. Break the issue into smaller versions of itself and call the function recursively

to solve each sub-problem.

Step 3 - Ensure recursion eventually ends: Ensure that the recursive function

ultimately reaches the base case and avoids an infinite loop.

Step 4 - Merge solutions: Combine the keys of the sub-problems to solve the initial

problem.

When to Use Recursion?

Ramachandran (2023) explains that when faced with a complex problem, it can be

helpful to break it down into smaller, more manageable pieces to find a solution. This

technique, known as recursion, involves a function calling itself either directly or

3 | P a g e

indirectly. It is beneficial for tackling more significant problems. To avoid infinite

recursion, we use base conditions to ensure that recursive calls are terminated. For

example, when searching for a clue, we would stop the recursion as soon as we find

it. If not, we would continue the algorithm to another target's dream. Each time a

recursive call is made, new local variables and parameters are created and stored in

stack memory, along with the state of the function. Each call consumes memory on the

stack, and an oversized or infinite recursion depth can result in a stack overflow error.

3. Discuss the security implications of both approaches.

Programming often uses regular expressions to process input, validate web form data,

and search for text (Larson & Kirk, 2018). Meanwhile, recursion is a function that

tackles intricate problems by breaking them down into smaller subproblems and calling

itself until a base case is attained (Atta, 2023). Both methods are commonly applied in

software solutions, and it is crucial to assess each one for possible vulnerabilities, risks,

and best practices to ensure security.

Regular expressions are used in security to fine-tune firewall rules, sanitise user input,

and customise malware detectors. However, incorrectly deployed regex patterns can

lead to vulnerabilities, especially in public-facing web applications. Faulty regex

patterns often fail to consider edge cases, leaving applications open to attacks.

Examples of real-life vulnerabilities caused by faulty regexes include XSS and SQL

injection.

However, Li (2020) adds that to safeguard against potential weaknesses in regular

expressions, it is recommended that developers adhere to these top-tier guidelines:

meticulously scrutinise all user input, steer clear of making regex patterns public, utilise

4 | P a g e

validated patterns, implement multiple layers of protection, and conduct extensive

testing of your application.

The recursion process involves two crucial components: base cases and recursive

cases. The base case(s) serve as the stopping point for the recursion, providing a

solution to the fundamental problem. Recursive calls work to solve progressively

smaller subproblems until the base case is reached, upon which the function returns a

value. Recursion is valuable in data structures, sorting algorithms, and problem-

solving. However, careful design is necessary to prevent infinite loops and excess

memory usage (Intellipaat, N.D.).

However, Intellipaat (N.D.) explain that when using recursion in C++, the function calls

itself, and it is crucial to identify base cases and manage memory to achieve optimal

results. However, potential obstacles, such as stack overflow and improper recursive

calls, need to be watched out for. Similarly, recursion in C operates under a similar

concept but has limitations. It is important to note that recursion in C requires manual

memory management, has limited recursion depth, and may be inefficient. To address

these issues, optimising the code or using an iterative approach for deep recursion

may be beneficial. As such, it is advised to carefully consider the specific

characteristics of the problem before implementing recursion.

While recursion can be a powerful tool, it's not without its potential downsides. Stack

overflow and high memory usage are possible issues when relying on recursive

solutions. Additionally, exponential time complexity can arise, making it critical to

carefully assess performance needs and optimise algorithms to minimise redundant

calculations and recursive calls (Intellipaat, N.D.).

5 | P a g e

References:

Larson, E. (2016). Automatic Checking of Regular Expressions. [online] Available at:

http://fac-staff.seattleu.edu/elarson/web/Research/acre.pdf [Accessed 31 Ago. 2023].

Larson, E. & Kirk, A. (2018). Generating Evil Test Strings for Regular Expressions.

[online] Available at: http://fac-staff.seattleu.edu/elarson/web/Research/egret.pdf

[Accessed 2 Sep. 2023].

Noteable (2023). Python Regex Match: A Comprehensive Guide For Pattern

Matching With Regular Expressions & Re Module. [online] Available at:

https://noteable.io/blog/python-regex-guide-for-pattern-matching/# [Accessed 3 Sep.

Enyinna, C. (2022). How to Use Regular Expressions in JavaScript – Tutorial for

Beginners. [online] Available at: https://www.freecodecamp.org/news/regular-

expressions-for-beginners/ [Accessed 2 Sep. 2023].2023].

Chris, K. (2023). The Regular Expressions Book – RegEx for JavaScript Developers

[Full Book]. [online] Available at: https://www.freecodecamp.org/news/regular-

expressions-for-javascript-developers/#whataretheusesofregularexpressions

[Accessed 2 Sep. 2023].

Atta, S. (2023). Understanding Recursion in Python: A Step-by-Step Guide. [online]

Medium. Available at: https://levelup.gitconnected.com/understanding-recursion-in-

python-a-step-by-step-guide-2b4eb777f6a0 [Accessed 3 Sep. 2023].

GeeksforGeeks (2017). Introduction to Recursion - Data Structure and Algorithm

Tutorials. [online] GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/introduction-to-recursion-data-structure-and-

algorithm-tutorials/.

http://fac-staff.seattleu.edu/elarson/web/Research/acre.pdf
http://fac-staff.seattleu.edu/elarson/web/Research/egret.pdf
https://noteable.io/blog/python-regex-guide-for-pattern-matching/
https://www.freecodecamp.org/news/regular-expressions-for-javascript-developers/#whataretheusesofregularexpressions
https://www.freecodecamp.org/news/regular-expressions-for-javascript-developers/#whataretheusesofregularexpressions
https://levelup.gitconnected.com/understanding-recursion-in-python-a-step-by-step-guide-2b4eb777f6a0
https://levelup.gitconnected.com/understanding-recursion-in-python-a-step-by-step-guide-2b4eb777f6a0
https://www.geeksforgeeks.org/introduction-to-recursion-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-recursion-data-structure-and-algorithm-tutorials/

6 | P a g e

Ramachandran, A. (2023). Difference between Recursion and Iteration - Interview

Kickstart. [online] Available at: https://www.interviewkickstart.com/learn/difference-

between-recursion-and-iteration#.

Li, V. (2020). Dangerous Regular Expressions. [online] Available at:

https://sec.okta.com/articles/2020/07/dangerous-regular-expressions.

Intellipaat (N.D.). Recursion in Data Structure - Working, Importance and Types.

[online] Available at: https://intellipaat.com/blog/recursion-in-data-

structure/#How_to_Use_Recursion [Accessed 3 Sep. 2023].

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration
https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration
https://sec.okta.com/articles/2020/07/dangerous-regular-expressions
https://intellipaat.com/blog/recursion-in-data-structure/#How_to_Use_Recursion
https://intellipaat.com/blog/recursion-in-data-structure/#How_to_Use_Recursion

