
1 | P a g e

Unit 3 – Learning Outcomes: Programming Languages: History, Concepts &

Design

1. Describe some critical milestones in the development of programming

languages.

How we create and interact with code has changed due to several significant turning

points in the evolution of programming languages (Juillet, 2022).

In today's world, computer programming is required to keep the systems and devices

we use daily operating smoothly. Programming languages enable humans to interact

with machines and make them perform necessary operations. Humans and machines

process information differently, and programming languages are the key to bridging

the gap between people and computers (HP, 2018).

In addition, HP (2018) lists the following significant advancements in computer

programming languages:

• 1883: The first programming language was developed in 1883 by Ada Lovelace

and Charles Babbage. Lovelace wrote the algorithm for the Analytical Engine,

the first computer program that computed Bernoulli numbers. She realised the

importance of numbers, as they could represent more than just numerical

values of things.

• 1949: Assembly language was created to simplify machine code language,

making it easier to program computers.

• 1952: Alick Glennie created Autocode, considered the first compiled

programming language that could be directly translated into machine code.

• 1957: John Backus developed FORTRAN, a programming language for

scientific, mathematical, and statistical projects.

• 1958: Algol was developed as an algorithmic language and precursor to modern

programming languages like Java and C.

• 1959: Dr. Grace Murray Hopper created COBOL as a language capable of

operating on all computer types.

• 1959: John McCarthy created LISP, a programming language for artificial

intelligence research. It is still in use today and can be used with Python and

Ruby.

• 1964: John G. Kemeny and Thomas E. Kurtz created BASIC, a programming

language designed for students with limited technical and mathematical

backgrounds, making computers accessible to a broader audience.

2 | P a g e

• 1970: Pascal was created by Niklaus Wirth and named in honour of Blaise

Pascal. The primary language used by Apple to construct its early software is

simple to learn.

• 1972: Smalltalk was developed by Alan Kay, Adele Goldberg, and Dan Ingalls

to enable quick code changes for programmers.

• 1972: Dennis Ritchie is credited with creating C, considered the first high-level

programming language. Unlike machine code, it is closer to human language.

• 1972: SQL was created for IBM by Donald D. Chamberlin and Raymond F.

Boyce. This language was used to examine and modify database-stored data.

• 1978: The math programming language MATLAB was created by Cleve Moler.

Research and teaching are conducted using this language.

• 1983: Objective-C was developed by Brad Cox and Tom Love as the primary

language for creating Apple software.

• 1983: Bjarne Stroustrup created C++, an extension of C, widely used.

• 1987: Perl was created by Larry Wall as a scripting language for text editing to

streamline the processing of reports.

• 1990: Haskell was created as a functional programming language for handling

challenging mathematical operations.

• 1991: Python was created by Guido Van Rossum and is a condensed, simple-

to-read programming language.

• 1991: Visual Basic, developed by Microsoft, allowed programmers to select and

modify code using a drag-and-drop process easily.

• 1993: R was developed by Ross Ihaka and Robert Gentleman for statisticians

to perform data analysis.

• 1995: Java was developed by Sun Microsystems specifically for use with

handheld devices.

• 1995: Rasmus Lerdorf created PHP for Web development, which remains

popular today.

• 1995: Yukihiro Matsumoto created Ruby as a versatile programming language

suitable for various tasks. It is extensively utilised in the creation of web

applications.

• 1995: JavaScript was developed by Brendan Eich to improve interactions on

Web browsers.

• 2000: Microsoft developed C# as a modern, object-oriented programming

language with features inspired by C++ and Visual Basic. C# shares similarities

with Java.

• 2003: Scala was developed by Martin Odersky as a programming language that

fuses elements of functional programming.

• 2003: Groovy was developed as a Java offshoot by James Strachan and Bob

McWhirter.

• 2009: Go was created by Google to address the common problems in large

software systems.

• 2014: Swift was created by Apple as a replacement for C, C++, and Objective-

C.

3 | P a g e

Today's computer programming languages are built on earlier ideas, some of which

are still used or are the basis for new ideas. Due to the ever-expanding technology,

modern languages will continue to be crucial to everyday life, making programmers'

jobs easier (HP, 2018).

2. Outline some fundamental paradigms that define the different types of

languages.

Bhumika_Rani (2018) states that an approach to problem-solving that makes use of

programming languages, tools, and methodologies is known as the programming

paradigm.

A programming paradigm represents the core coding approach and methodology,

providing a conceptual foundation for creating and organising code in a language. It

impacts how tasks are split, data structures are employed, operations are carried out,

and activities are coordinated (Joy, 2022).

Programming languages are categorised into paradigms based on their

characteristics. These paradigms include code structures and execution models.

Imperative and Declarative are the two main programming paradigms. They further

divide into additional paradigms with even more specific traits (Garcia, 2021).

As Garcia (2021) explains, the Imperative Paradigm is the oldest programming

paradigm, focused on sequences of instructions that modify computer system states.

It's based on von Neumann's architecture, which includes a processing unit, control

unit, and memory. Imperative programming languages manipulate data in memory

using statements and a sequential order for executing instructions. It has two popular

derived paradigms: procedural and object-oriented. Furthermore, the Declarative

Paradigm defines tasks for computer systems without specifying how to process them.

4 | P a g e

It provides "guides" on what tasks should be accomplished, resulting in a higher

abstraction level and improved maintainability. The functional and logic paradigms

stem from this approach.

Although there are more paradigms, the following are the most well-known and widely

applied ones in programming, according to Garcia (2021):

1. Procedural Programming: Procedural programming breaks programs into

subroutines for easier maintenance and modularity. Subroutines have names

and parameters and can be called to perform a specific task. Some subroutines

need to return results.

2. Object-Oriented Programming: Object-oriented programming is based on

modular programming but models the real world. Classes represent real-world

objects and can be instantiated as objects. Attributes store information about a

class, and methods are procedures associated with a class that can produce

internal changes or side effects.

3. Functional Programming: Functional programming involves using functions

as data types, assigning them to variables and passing them as arguments to

other functions. There are different categories of functions, such as first-class,

pure, and high-order functions. First-class functions are elementary and can be

assigned, passed, and returned. Pure functions have transparency and lack

side effects. High-order functions receive or return functions and include

examples like the map function.

4. Logic Programming: Logic programming uses formal logic to solve problems.

Programs rely on a knowledge base of logic and rules. Facts are assertions

about objects, while rules describe logical relations among facts. Queries

consist of logic expressions and operators. Programs use an inference system

to search for proofs and return solutions to questions. If there are no solutions,

the program produces a false value.

3. Explain the key concepts that determine the operation of programming

languages.

Programming languages are artificial languages used to control machines, especially

computers. They use syntactic and semantic rules to determine structure and meaning.

These languages facilitate communication for organising and manipulating information

and expressing algorithms. There are thousands of programming languages, and new

ones are created every year (cs.mcgill.ca, N.D.).

5 | P a g e

Computer programming is creating instructions that tell a computer what to do. All

software adheres to certain programming principles, and skills can be improved by

grasping different concepts (Indeed, 2023).

The essential principles of programming, according to Educative (N.D.), include the

following:

1. Variable Declaration: Variables are containers that store data values in

memory and are created using a declaration or keyword that varies across

programming languages. Variable names are typically alphanumeric but can

include special characters like underscores or dollar signs. They can hold

values of any data type supported by the programming language, which may

change during program execution.

2. Basic Syntax: Programmers must master the basic syntax of the programming

language they are learning. Each programming language has its syntax. The

principles defining a language's structure are called its syntax. It is nearly

difficult to read or comprehend a computer language without syntax.

3. Data Type and Structures: Data types are categories of data. The most

common ones are strings, Booleans (true/false), numbers (integers and

decimals), characters, and arrays. Data structures are collections with

operations for efficiently managing, organising and storing data. Common data

structures include stacks, heaps, trees, linked lists, queues, arrays, tables, and

graphs.

4. Flow Control Structures (Conditionals and loops): Flow Control Structures

are vital components of computer programs, allowing them to make decisions.

There are three types: sequential, selection, and iteration. Sequential is the

fundamental execution of code statements, selection involves the computer

deciding action based on test results, and iteration allows for code to be run

repeatedly until a particular condition is no longer valid.

5. Functional Programming: Functions are containers that take in inputs and

return outputs. Pure functions always produce the same output for the same

information. Functional Programming utilises pure functions and avoids data

mutation and side effects.

6. Object-Oriented Programming: Object-oriented programming (OOP) is a

programming paradigm that uses objects to store data and methods to

manipulate it. There are four fundamental principles of OOP: Inheritance,

Polymorphism, Abstraction, and Encapsulation.

7. Debugging: The ability to debug is essential. It entails finding and fixing any

problems, flaws, or 'loopholes' in one's code, both current and potential.

8. IDEs and Coding Environments: IDE stands for Integrated Development

Environment. Programmers use it to write code and organise text groups. It

includes code completion, compilation, debugging, and syntax highlighting.

Some popular IDEs are Visual Studio Code, IntelliJ IDEA, NetBeans, and

Eclipse.

6 | P a g e

4. Discuss key programming challenges and recommended best practices.

Coding is crucial in today's digital world for technology and software development.

Skilled coders are in high demand due to rapid technological advancements. Anyone

can become an experienced coder with the right mentality and essential abilities.

(Geeks of Gurukul, 2023).

Novice programmers face various challenges, including lack of motivation, limited

scientific knowledge, difficulty understanding abstract concepts, and tracking complex

discussions. Previous research has shown that these challenges are in addition to

coping with new programming languages and understanding instructions while coding

(Saha & Mitra Thakur, 2022).

Code Signing Store (N.D.) explains that programming best practices exist to ensure

codes are safe from attackers and easy to read, test, use, and maintain for authorised

users. We write code not just for ourselves but for others who will need to read it.

Software development can be challenging due to project complexity, time constraints,

and resource limitations. Tran (2021) has compiled a list of common challenges and

solutions as follows:

1. Lack of Management: Clear guidance from project managers is crucial for

effective software development. A concise project plan with outlined critical

tasks and responsibilities and a timeline helps developers stay on track and

avoid delays. Regular updates to the project plan ensure everyone is on the

same page.

2. Difficulty Estimating Time and Resources: Estimating time and resources for

software projects takes much work. Realistic timelines are essential for budget

and time constraints. Breaking tasks into smaller chunks helps. Use tools like

Toggl or Harvest to track effort. Set deadlines and have backup plans for

potential problems.

3. Lack of Resources for the Software Development Process: Software

development can be challenging due to limited budgets and resources. Projects

are becoming more complex, requiring more time and money. Developers may

7 | P a g e

also face obstacles like limited access to testing computers, a shortage of

engineers, or outdated technology. One way to overcome these challenges is

by using free assets available online. Teams should communicate their

resource needs to ensure they have the tools to produce quality products. It's

also essential to prioritise features and look for cost-cutting opportunities to save

time and money.

4. Defining the Requirements of the Software Development Projects: Defining

software requirements is time-consuming and challenging. Clear and concise

requirements are essential to ensure clarity and timely progress in the project.

Holding discussions with customers and creating prototypes for feedback can

provide transparency and efficiency in the development process.

5. Miscommunication with Customers/Stakeholders: Software developers

face miscommunication among customers and stakeholders, leading to delays

and a poor final product. To prevent this, establish regular communication

channels, be clear about requirements, document everything, and ask

questions for clarification.

6. Strict Time Constraints: Software developers often face strict time constraints

and pressure to meet deadlines. To manage this challenge, companies should

prioritise good time management by setting clear expectations and realistic

deadlines from the start. Teams should also take breaks and build in time for

unexpected events to avoid putting the project at risk.

7. The Complexity of Software Projects: Developers often face the challenge of

complex projects with numerous dependencies and potential problems. To

overcome this, they should break down the project into manageable tasks,

establish a plan for handling issues, communicate closely with their team, and

devise strategies for false starts to stay organised and on track.

8. Finding Qualified Talents: Finding qualified software development talent can

be challenging due to a shortage of workers and high hiring costs. Companies

can be more proactive by identifying needed skills, offering attractive job

packages, promoting their company culture, and considering outsourcing or

intern opportunities. Recruitment agencies and online platforms can also

provide access to ready-made resumes for skilled professionals.

9. Testing and Debugging: Software testing teams often face challenges with

testing and debugging code, including identifying and fixing errors. Developers

can overcome these challenges by meticulous work, understanding the system

and code they're working on, using automated debugging tools, and

establishing a thorough testing plan before releasing code to production. This

approach saves time and effort while ensuring error-free code.

10. Maintaining the Competitive Edge: To stay ahead in software development,

companies must continually innovate and improve, monitor industry

8 | P a g e

developments, explore new technologies, and invest in R&D initiatives. This will

help them stay competitive and better serve their customers.

5. Explain what design patterns are and when to use them.

Design patterns are pre-made blueprints to solve common problems in software

design. They're not specific code but a concept for solving a problem. Patterns need

clarification with algorithms, which define a set of actions to achieve a goal. A pattern

is more like a blueprint with the exact implementation up to the programmer

(Refactoring.guru, 2014). Therefore, using design patterns can improve software's

readability, extensibility, and maintenance. They can also increase the effectiveness

of the code and aid in avoiding typical mistakes (Silk, 2022).

Design patterns require creativity, attention to detail, and technical knowledge. A

successful design pattern visualises and translates the finished product into a precise

and accurate pattern. Design patterns provide reusable solutions for everyday

problems in software design. They speed up development by giving well-tested

paradigms that are flexible, reusable, and maintainable (GeeksforGeeks, 2015). As a

result, Gang of Four (GoF) design patterns, divided into Creational, Structural, and

Behavioural groups, are the basis for all other patterns, according to Dofactory (2018).

The three primary categories of design patterns, as outlined by Silk (2022), are as

follows:

1. Creational patterns are used to create objects in a controlled way that suits

the situation. These patterns help reduce complexity, increase stability, and

improve code reusability. Examples of creational design patterns include

Singleton, Factory Method, Prototype, and Builder.

2. Structural patterns help connect application components, particularly in

more complex applications. Examples of structural designs include

Adapters, Bridge, Decorator, and Facade.

9 | P a g e

3. Behavioural patterns facilitate effective interaction between components by

defining responsibilities. Examples include Chain of Responsibility, Iterator,

Mediator, Observer, and Strategy design patterns. The aim is to simplify

procedures.

Design patterns can speed development, prevent issues, simplify maintenance,

improve code quality, ease readability, and facilitate communication and collaboration

between team members (Awad, 2022).

Programmers can use design patterns to improve code readability, maintainability, and

extensibility, eliminate errors, and create more efficient code for common software

design issues (Gill, 2023).

Smith (2023) explained that design patterns are essential for efficient, maintainable,

and high-quality software solutions. They provide reusable solutions to common

problems, promote good design principles, and establish a common language for

developers to collaborate effectively. Using design patterns reduces effort and

improves scalability, performance, and code readability. Naming conventions also help

maintain consistency and prevent confusion in larger teams or codebases.

10 | P a g e

References:

Juillet, R. (2022). The evolution of programming languages: from 1843 to today.

[online] Available at: https://www.bocasay.com/evolutions-trends-programming-

languages/.

HP (2018). Computer History: A Timeline of Computer Programming Languages |

HP® Tech Takes. [online] Available at: https://www.hp.com/us-en/shop/tech-

takes/computer-history-programming-languages.

Bhumika_Rani (2018). Introduction of Programming Paradigms - GeeksforGeeks.

[online] GeeksforGeeks. Available at: https://www.geeksforgeeks.org/introduction-of-

programming-paradigms/..

Joy, A. (2022). Types of Programming Paradigms. [online] Pythonista Planet.

Available at: https://pythonistaplanet.com/types-of-programming-

paradigms/#:~:text=Let [Accessed 23 Aug. 2023].

Cocca, G. (2022). Programming Paradigms – Paradigm Examples for Beginners.

[online] Available at: https://www.freecodecamp.org/news/an-introduction-to-

programming-paradigms/#popular-programming-paradigms.

Garcia, V.F. (2021). Imperative and Declarative Programming Paradigms | Baeldung

on Computer Science. [online] www.baeldung.com. Available at:

https://www.baeldung.com/cs/imperative-vs-declarative-programming.

cs.mcgill.ca. (N.D.). Programming language. [online] Available at:

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/p/Programming_language.htm#

:~:text=A%20programming%20language%20is%20an.

https://www.bocasay.com/evolutions-trends-programming-languages/
https://www.bocasay.com/evolutions-trends-programming-languages/
https://www.hp.com/us-en/shop/tech-takes/computer-history-programming-languages
https://www.hp.com/us-en/shop/tech-takes/computer-history-programming-languages
https://www.geeksforgeeks.org/introduction-of-programming-paradigms/
https://www.geeksforgeeks.org/introduction-of-programming-paradigms/
https://pythonistaplanet.com/types-of-programming-paradigms/#:~:text=Let
https://pythonistaplanet.com/types-of-programming-paradigms/#:~:text=Let
https://www.freecodecamp.org/news/an-introduction-to-programming-paradigms/#popular-programming-paradigms
https://www.freecodecamp.org/news/an-introduction-to-programming-paradigms/#popular-programming-paradigms
https://www.baeldung.com/cs/imperative-vs-declarative-programming
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/p/Programming_language.htm#:~:text=A%20programming%20language%20is%20an
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/p/Programming_language.htm#:~:text=A%20programming%20language%20is%20an

11 | P a g e

Indeed (2023). 6 Fundamental Programming Concepts (With Tips to Improve).

[online] Available at: https://ca.indeed.com/career-advice/career-

development/fundamental-programming-concepts#

Educative (N.D.). What are the basic fundamental concepts of programming? [online]

Available at: https://www.educative.io/answers/what-are-the-basic-fundamental-

concepts-of-programming.

Geeks of Gurukul (2023). Skills Needed to Become a Competent Coder. [online]

Available at: https://www.linkedin.com/pulse/skills-needed-become-competent-coder-

geeks-of-gurukul/ [Accessed 23 Aug. 2023].

Saha, B. & Mitra Thakur, G.S. (2022). Learning Programming: Challenges and

Remedies. SSRN Electronic Journal. doi:https://doi.org/10.2139/ssrn.4213000.

Code Signing Store. (N.D.). The Ultimate Programming Best Practices Guide.

[online] Available at: https://codesigningstore.com/ultimate-programming-best-

practices-guide.

Unadkat, J. (2022). Key Software Testing Challenges and Solutions. [online]

Available at: https://www.browserstack.com/guide/software-testing-challenges.

Tran, T. (2021). 10 Most Common Software Development Challenges. [online]

Available at: https://www.orientsoftware.com/blog/software-development-challenges/.

Refactoring.guru. (2014). What’s a design pattern? [online] Available at:

https://refactoring.guru/design-patterns/what-is-pattern.

Silk, J. (2022). Why Software Development Design Patterns Matter For Your

Business. [online] Startechup Inc. Available at:

https://www.startechup.com/blog/software-development-design-patterns/.

https://ca.indeed.com/career-advice/career-development/fundamental-programming-concepts
https://ca.indeed.com/career-advice/career-development/fundamental-programming-concepts
https://www.educative.io/answers/what-are-the-basic-fundamental-concepts-of-programming
https://www.educative.io/answers/what-are-the-basic-fundamental-concepts-of-programming
https://www.linkedin.com/pulse/skills-needed-become-competent-coder-geeks-of-gurukul/
https://www.linkedin.com/pulse/skills-needed-become-competent-coder-geeks-of-gurukul/
https://codesigningstore.com/ultimate-programming-best-practices-guide
https://codesigningstore.com/ultimate-programming-best-practices-guide
https://www.browserstack.com/guide/software-testing-challenges
https://www.orientsoftware.com/blog/software-development-challenges/
https://refactoring.guru/design-patterns/what-is-pattern
https://www.startechup.com/blog/software-development-design-patterns/

12 | P a g e

GeeksforGeeks (2015). Introduction to Pattern Designing. [online] Available at:

https://www.geeksforgeeks.org/introduction-to-pattern-designing/.

Dofactory (2018). .NET Design Patterns in C# and VB.NET - Gang of Four (GOF) -

doFactory.com. [online] Available at: https://www.dofactory.com/net/design-patterns.

Awad, H. (2022). 4 Things to Consider When Applying Design Patterns. [online]

Medium. Available at: https://betterprogramming.pub/4-things-to-consider-when-

applying-design-patterns-46b9fcee4a59.

Gill, D.S. (2023). Mastering Design Patterns: A Guide to Writing Cleaner Code.

[online] Medium. Available at: https://medium.com/@dawinderapps/mastering-

design-patterns-a-guide-to-writing-cleaner-code-92a634313ba9 [Accessed 24 Aug.

2023].

Smith, G. (2023). Best Software Development Practices - Comprehensive Guide.

[online] Mobile & Web App Development Company | USA, UK, Norway. Available at:

https://itcraftapps.com/blog/mastering-software-development-a-guide-to-excellence-

in-coding/ [Accessed 24 Aug. 2023].

https://www.geeksforgeeks.org/introduction-to-pattern-designing/
https://www.dofactory.com/net/design-patterns
https://betterprogramming.pub/4-things-to-consider-when-applying-design-patterns-46b9fcee4a59
https://betterprogramming.pub/4-things-to-consider-when-applying-design-patterns-46b9fcee4a59
https://medium.com/@dawinderapps/mastering-design-patterns-a-guide-to-writing-cleaner-code-92a634313ba9
https://medium.com/@dawinderapps/mastering-design-patterns-a-guide-to-writing-cleaner-code-92a634313ba9
https://itcraftapps.com/blog/mastering-software-development-a-guide-to-excellence-in-coding/
https://itcraftapps.com/blog/mastering-software-development-a-guide-to-excellence-in-coding/

