
1 | P a g e

1. Describe the scenarios in which each set operation will apply to the

driverless car scenario.

Sets are collections of distinctive and immutable components. They support

mathematical operations, including difference, intersection, and union. They can be

used to solve programming problems in Python, and working with them is simple

because of Python's built-in functions (Abid, 2022).

Therefore, Cuemath (N.D.) stated that set operations are similar to integer math

operations. Sets are collections of objects, such as real-world objects or numbers. To

illustrate relationships between sets, we employ set operations. The four main

operations are union, intersection, complement, and difference.

There are many instances in which autonomous vehicles can effectively use the

established approach. Here are some possible scenarios:

Union: The collection of items in either one of the two sets or in both is the union of

the two sets (BYJUS, N.D.). This may be applied to a driverless car to determine every

route it could take to get there. For instance, the car would have a comprehensive list

of all possible ways to its destination if all the roads it could take and all the routes it

could take through crossings were combined.

Intersection: The collection of elements in both sets is the intersection of two sets

(Cuemath, N.D.). This might be used to identify every object in the route of a driverless

car. For instance, a comprehensive list of all items in the car's way would be provided

by the intersection of the set of all objects the car's sensors can see and the set of all

objects the car's navigation system is aware of.

Difference: The collection of items in the first set that are absent from the second set

distinguishes the two sets (Taylor, 2023). This may be employed in a driverless car to

identify items not in the car's route. For instance, the car would have a comprehensive

2 | P a g e

list of all items that are not in its route if there was a difference between the set of all

objects that its sensors can see and the set of all objects that its navigation system is

aware of.

Complement: The group of components not belonging to a set is known as the

complement (Study.com, 2023). This may be employed in a driverless car to recognise

items not in the car's immediate surroundings. For instance, the car would have a

complete list of all objects that are not in its immediate surroundings if its sensors could

view the complement of the set of all visible objects.

2. Implement a linear data search technique.

Efficient retrieval of information is crucial when dealing with large databases. To

achieve this, it is imperative to use the appropriate search algorithm. The two most

commonly used algorithms for searching specific elements within a list are linear

search and binary search (Parmar & Kumbharana, 2015).

The linear search algorithm is a sequential process that looks over each element in a

list from the beginning until it finds the one it is looking for. If the desired element cannot

be discovered, the search continues until the dataset is exhausted (GeeksforGeeks,

2019).

Here is how to implement a linear data search step-by-step:

1. Establish the data set's size. This will assist us in figuring out how frequently

you should loop through the data set.

2. 2. Set a counter variable to zero. We can see your progression through the data

set using this variable.

3. 3. Begin from the data set's beginning.

4. 4. Compare the current data point and the value we seek.

5. 5. If the current item matches the value you are looking for, return the item's

index.

6. Increase the counter variable and go to step 4 if the current item does not equal

the value you are looking for.

3 | P a g e

7. Return -1 if the value we are looking for can only be found after searching at the

end of the data collection.

Here is a direct Python implementation example based on the ideas of Tutorialspoint

Examples (2023):

def linear_search(array, value):
 """
 Performs a linear search on the given array for the given value.

 Args:
 array: The array to search.
 value: The value to search for.

 Returns:
 The index of the value in the array, if found, or -1 if not found.
 """

 size = len(array)
 counter = 0

 while counter < size:
 if array[counter] == value:
 return counter

 counter += 1
 return -1

array = [1, 2, 3, 4, 5]
value = 3

index = linear_search(array, value)

if index != -1:
 print("The value {} was found at index {}".format(value, index))
else:
 print("The value {} was not found".format(value))

The array to search within and the value to look for are the two parameters required

by this function. Then, iteratively compares each element of the array to the value.

The function returns the object’s index in the array if the value is found. The function

returns -1 if the value cannot be located.

The linear_search function employs the optimal method for writing a linear search

process via:

4 | P a g e

• Figure out the data set's size before it begins iterating over the data. This

enhances the performance of the function by letting it know how many times it

needs to loop around the data set.

• keeping track of its movement through the data set with a counter variable.

• returning -1 in the absence of a value. The function can now indicate that the

value could not be found.

5 | P a g e

References:

Abid, E. B. (2022). Python Set Operations: Union, Intersection, and Difference – With

10 Examples. [online] Available at: https://learnpython.com/blog/python-set-

operations/.

Cuemath. (N.D.). Set Operations - Formula, Properties, Examples. [online] Available

at: https://www.cuemath.com/algebra/operations-on-sets/.

BYJUS. (n.d.). Union of Sets - Venn Diagram Representation with Examples. [online]

Available at: https://byjus.com/maths/union-of-

sets/#:~:text=Let%20us%20consider%20a%20universal [Accessed 2 Jul. 2023].

Taylor, C. (2023). This Is the Difference of Two Sets in Set Theory. [online] Available

at: https://www.thoughtco.com/difference-of-two-sets-3126580.

study.com. 2023. No page title. [ONLINE] Available at:

https://study.com/learn/lesson/complement-set-examples-

math.html#:~:text=and%20A%5Ec.- [Accessed 2 Jul. 2023].

Parmar, V. and Kumbharana, C. (2015). Comparing Linear Search and Binary

Search Algorithms to Search an Element from a Linear List Implemented through

Static Array, Dynamic Array and Linked List General Terms. International Journal of

Computer Applications, [online] 121(3), pp.975–8887. Available at:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=724d065953776bd

154266237076c1b7cfd93acab [Accessed 2 Jul. 2023].

GeeksforGeeks (2019). Linear Search - GeeksforGeeks. [online] GeeksforGeeks.

Available at: https://www.geeksforgeeks.org/linear-search/.

https://learnpython.com/blog/python-set-operations/
https://learnpython.com/blog/python-set-operations/
https://www.cuemath.com/algebra/operations-on-sets/
https://byjus.com/maths/union-of-sets/#:~:text=Let%20us%20consider%20a%20universal
https://byjus.com/maths/union-of-sets/#:~:text=Let%20us%20consider%20a%20universal
https://www.thoughtco.com/difference-of-two-sets-3126580
https://study.com/learn/lesson/complement-set-examples-math.html#:~:text=and%20A%5Ec.-
https://study.com/learn/lesson/complement-set-examples-math.html#:~:text=and%20A%5Ec.-
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=724d065953776bd154266237076c1b7cfd93acab
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=724d065953776bd154266237076c1b7cfd93acab
https://www.geeksforgeeks.org/linear-search/

6 | P a g e

Tutorialspoint Examples (2023). Linear Search in Python. [online] Tutorialspoint

Examples. Available at: https://tutorialspointexamples.com/linear-search-in-python

[Accessed 2 Jul. 2023].

https://tutorialspointexamples.com/linear-search-in-python

