
1 | P a g e

1. Apply Python tools to examine the quality of the code.

The health and growth of large projects depend on maintaining consistent code quality.

To accomplish it manually, though, can take time and effort. Fortunately, many Python

code tools can simplify and speed up this procedure. The tool decision is ultimately a

matter of personal preference, as with many other facets of software development

(Eriksen, 2019).

VanTol (2018) stated that evaluating a particular code, programme, or software is

called "coding quality." Code is typically seen as excellent quality if it is adequately

documented and its lines are simple to understand.

The challenge of evaluating the quality of a piece of code is subjective and varies by

team, organisation, and sector (Bellairs, 2019). For instance, the definition of excellent

code in a financial company can differ from that in a cybersecurity company. An

organisation’s user experience, application security, maintainability, testability,

readability, and software performance are all significantly impacted by the quality of

the code. It is significant for several reasons, such as:

• Reliability: Poorly written code has a lower probability of having flaws, which

can cause crashes, data loss, and other issues.

• Maintainability: High-quality code is simpler to comprehend and adapt, saving

time and money.

• Scalability: Excellent code can be expanded to accommodate heavier demands

easily.

• Security: Vulnerabilities in high-quality code are less likely to exist.

According to Bellairs (2019), several factors, such as the following, might influence the

quality of a piece of software:

• Coding style: The code ought to be cleanly organised and simple to understand.

• The code must be thoroughly documented for other developers to comprehend

it.

• Testing: To ensure the code functions properly, it should be thoroughly tested.

• Security: Vulnerabilities in the code should be examined.

2 | P a g e

Regulation is essential to our work as developers. It must be highly calibrated before

distributing or using the code in a live environment (Codersid, 2023). For instance, here

are some important factors to take into account while evaluating the quality of the code:

• Readability: Good code should be simple to read and comprehend. Comments

should be used and well-organised with meaningful variable and function names

when appropriate.

• Coding etiquette: The code should adhere to the etiquette prescribed by the

programming language and framework it was created in.

• Maintainability: Well-written code ought to be simple to update and maintain. It

should be modular, have distinct divisions of labour, and reduce dependencies

between various code sections.

• Efficiency: Effective resource use and efficiency are key components of well-

written code. It should be performance optimised and not conduct extraneous

calculations or processes.

• Testing: A complete set of tests should be included in well-written code to

guarantee its accuracy and maintainability.

• Error handling: Well-written code should be able to gracefully and predictably

respond to errors and unforeseen circumstances.

For any software developer, evaluating the quality of the code is essential. Fortunately,

Python provides a wide range of tools and modules that can be quite helpful in

examining and improving code quality (Dwyer, 2023). For instance, the following

Python tools are used to assess the quality of code:

1. Code linters can examine the code to find potential errors, assure compliance

with coding standards, and find stylistic violations.

2. code formatters can automatically format the code by predetermined criteria to

create a uniform code style.

3. Tools for measuring code coverage calculate the proportion of the code that

tests run.

4. Static analysis tools may examine the code without actually running it, warning

about potential problems and giving information about the complexity and

maintainability of the code.

Shaw (2018) mentioned that Python's built-in tools and libraries simplify testing. Our

ability to verify that our applications are operating as planned. Python makes testing

easy, allowing you to check your code quickly and sustainably using unit tests.

3 | P a g e

2. Implement data structures to store data.

Effective storage, handling, and access to data are essential when working with

information. This is where data structures come into play, serving to meet our needs

in an organised manner (Raj, 2022). Data structures are the fundamental building

blocks of programming languages, providing a systematic approach to fulfilling the

demands above. Python, for example, has four types of data structures: List, Tuple,

Dictionary, and Set, referred to as implicit or built-in data structures. These structures

enable us to manage, connect, manipulate, and utilise our data in various ways.

Additionally, user-defined custom data structures like Stack, Queue, Tree, Linked List,

and Graph offer customers complete control over their functionality and are suitable

for more complex programming tasks.

Data structures are specialised formats to efficiently organise, analyse, retrieve, and

store data for certain purposes. Various basic and advanced data structure types allow

consumers to access and utilise data in the best possible ways (Loshin, 2021). Also,

Akash (2019) states that data structures simplify information organisation so that

machines and people can understand it. Since data structures provide an effective

method for organising and manipulating data, their proper use is essential for efficient

data storage in programming.

Data structures act as the foundation for building programmes. They provide original

approaches to data organisation for the best accessibility depending on the intended

use (Loshin, 2021).

Data structures must be built through important processes to store data successfully

(Novotny, 2023). For instance, these procedures include carefully testing the data

structure, precisely specifying it, correctly implementing it, and choosing the best data

structure.

4 | P a g e

According to Novotny (2023), utilising compound data structures such as lists, arrays,

and hash tables is essential for managing large amounts of data. They recommend

implementing formal programming methods, modular design, and expert coding

techniques. These data structures provide standardised solutions that decrease

development and testing efforts while being faster and more memory-efficient.

Additionally, they are easier to comprehend and manage since programmers follow

the same conventions.

We must completely comprehend and use data structures to be proficient

programmers. It is necessary for effective data organising and manipulation. The

implementation of frequently used data structures in Python will be covered in detail in

this guide. Sannikov (2022) outlines the processes for constructing the frequently used

data structures in Python:

1. Python lists are dynamic arrays that can hold different data types and objects.

They are ordered and can be accessed by index. We can add, remove, and

change elements within the list. Lists are useful for storing nested data

structures and for data analysis. However, they can be slow for arithmetic

operations and use more disk space.

Creating a list
my_list = [1, 2, 3, 4, 5]
my_list1 = list()

2. Python dictionaries are like real-world dictionaries with keys and values. They

help access specific data related to a unique key quickly. It's crucial to ensure

key uniqueness to make sure everything is clear. Dictionaries are useful for

mapping a special key to data and quick look-up, but they need more space and

may cause compatibility issues in different Python versions.

Creating a dictionary
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Accessing values in a dictionary
print(my_dict['name'])

Adding or modifying values in a dictionary
my_dict['occupation'] = 'Engineer'

Removing a key-value pair from a dictionary
del my_dict['age']

5 | P a g e

3. Python sets are useful for removing duplicates and have set operations similar

to mathematics. They're also efficient for checking element presence but not for

maintaining insertion order or changing elements through indexing.

Creating a set
my_set = {1, 2, 3}
Adding elements to a set
my_set.add(4)
Removing elements from a set
my_set.remove(3)

Set operations
other_set = {3, 4, 5}
union_set = my_set.union(other_set)
intersection_set = my_set.intersection(other_set)

4. Lists and tuples are similar, but tuples are immutable and can be used as

dictionary keys if their elements are immutable. Creating a tuple is easy, and

they provide benefits such as content protection, but they are unsuitable for

modifiable objects and take up more memory than lists.

Creating a tuple
my_tuple = (1, 2, 3)

Sannikov (2022) concluded that understanding data structures is crucial to

programming since it enables effective data storage and retrieval. Lists, dictionaries,

sets, and tuples are the four main types of data structures in Python, while lists, sets,

and dictionaries are immutable types. Lists work well for storing various related items,

whereas dictionaries are needed to quickly access data and link a key to a value, much

like a real-world dictionary. Sets are excellent for comparing two data sets because

they can easily perform operations like intersection and difference. Although

immutable, tuples are similar to lists in that they act as error-proof data containers.

3. Implement a search algorithm to explore stored data.

In practically any application, finding data that is stored in several data structures is an

essential task. Several algorithms can be used, each with its implementation and using

various data structures. Developers must be adept at selecting the appropriate

algorithm for a given task because doing so can make or break an application. The

6 | P a g e

choice of algorithm can affect the application's performance in terms of speed,

dependability, and stability, and if the incorrect algorithm is made, even a

straightforward request may fail (Stack Abuse, 2019).

Any algorithm that retrieves information from a data structure or is calculated in the

search space of a problem domain, either with discrete or continuous values, is

considered a search algorithm, according to Wikipedia (2019).

Based on their operation, search algorithms can be divided into two main categories:

sequential search and interval search (GeeksforGeeks, 2017). Like linear search,

sequential search includes going through a list or array one element at a time and

verifying them all. However, interval search uses algorithms that are much more

effective than linear search and is specifically created for sorted data structures. These

algorithms divide the search space in half and continually target the centre of the

search structure. An excellent illustration of an interval search algorithm is a binary

search.

An essential and basic search method is the linear search algorithm. It is comparable

to an improved in-operator for Python that we can build ourselves (Stack Abuse, 2019).

The procedure consists of exhaustively scanning an array and immediately reporting

the index of the first instance of the desired item. Let's take a look at an idea linear

search presented by Thomas (2022):

def LinearSearch(data, target):
 for index, value in enumerate(data):
 if value == target:
 return index
 return -1 # Target not found

my_list = [10, 5, 2, 8, 3, 9]
target = 8
result = LinearSearch(my_list, target)
if result != -1:
 print(f"Found at index {result}")
else:

7 | P a g e

 print("Target not found")

In this example, the LinearSearch function repeatedly iterates through the data list,

comparing each member to the goal value. The index is given back if a match is

discovered. -1 is returned if the search is unsuccessful in finding a match.

The binary search algorithm is the preferred technique for locating a particular value in

a sorted array. It uses the "divide and conquer" strategy, which is extremely effective,

and is the fastest searching approach accessible (Krishna, 2022). Let's examine a

binary search to see how this approach functions in action:

def BinarySearch(list, target):
 start = 0
 end = len(list)-1

 while start <= end:
 mid = start + (end-start)//2

 if list[mid] > target:
 end = mid-1
 elif list[mid] < target:
 start = mid+1
 else:
 return mid

 return -1

if __name__ == '__main__':
 list = [2, 12, 15, 17, 27, 29, 45]
 target = 17
 print(f"Found at index {result}")

A start and end index defines the search range for the BinarySearch function. It

calculates the middle index and compares the value to the desired value. The

comparison reduces the search range until a match is discovered or the search space

is exhausted.

Implementing and using search algorithms like linear search or binary search, which

operate based on certain search criteria, is essential for effectively exploring and

retrieving material from stored collections.

8 | P a g e

References:

Eriksen, M. (2019). 5 Awesome Tools For Python Code Quality. [online] Available at:

https://dev.to/madelyneriksen/5-awesome-tools-for-python-code-quality-2pc

[Accessed 17 Jun. 2023].

VanTol, A. (2018). Python Code Quality: Tools & Best Practices. [online]

Realpython.com. Available at: https://realpython.com/python-code-quality/.

Bellairs, R. (2019). What Is Code Quality? Overview + How to Improve Code Quality.

[online] Perforce Software. Available at: https://www.perforce.com/blog/sca/what-

code-quality-overview-how-improve-code-quality.

CODERSID BLOGS (2023). How to Find Examples of Well-Written & Clean

Code? [online] Codersid. Available at: https://codersid.com/how-to-find-examples-of-

well-written-clean-code/ [Accessed 17 Jun. 2023].

Dwyer, T. (2023). 12 Python Scripts for Optimising Your Code Development. [online]

Medium. Available at: https://bootcamp.uxdesign.cc/12-python-scripts-for-optimising-

your-code-development-310d4a0915ca [Accessed 16 Jun. 2023].

Shaw, A. (2018). Getting Started With Testing in Python – Real Python. [online]

realpython.com. Available at: https://realpython.com/python-testing/#unit-tests-vs-

integration-tests.

Raj, A. (2022). Data Structures in Python - AskPython. [online] Available at:

https://www.askpython.com/python/data-structures-in-

python#:~:text=The%20data%20structures%20in%20Python%20are%20List%2C%2

0Tuple%2C [Accessed 12 Jun. 2023].

https://dev.to/madelyneriksen/5-awesome-tools-for-python-code-quality-2pc
https://realpython.com/python-code-quality/
https://www.perforce.com/blog/sca/what-code-quality-overview-how-improve-code-quality
https://www.perforce.com/blog/sca/what-code-quality-overview-how-improve-code-quality
https://bootcamp.uxdesign.cc/12-python-scripts-for-optimising-your-code-development-310d4a0915ca
https://bootcamp.uxdesign.cc/12-python-scripts-for-optimising-your-code-development-310d4a0915ca
https://realpython.com/python-testing/#unit-tests-vs-integration-tests
https://realpython.com/python-testing/#unit-tests-vs-integration-tests
https://www.askpython.com/python/data-structures-in-python#:~:text=The%20data%20structures%20in%20Python%20are%20List%2C%20Tuple%2C
https://www.askpython.com/python/data-structures-in-python#:~:text=The%20data%20structures%20in%20Python%20are%20List%2C%20Tuple%2C
https://www.askpython.com/python/data-structures-in-python#:~:text=The%20data%20structures%20in%20Python%20are%20List%2C%20Tuple%2C

9 | P a g e

Loshin, D. (2021). What are Data Structures? - Definition from WhatIs.com. [online]

SearchDataManagement. Available at:

https://www.techtarget.com/searchdatamanagement/definition/data-structure.

Akash (2019). Data Structures in Python | List, Tuple, Dict, Sets, Stack, Queue.

[online] Available at: https://www.edureka.co/blog/data-structures-in-python/.

Novotny, J. (2023). Understanding Data Structures: Definition, Uses & Benefits.

[online] Available at: https://www.linode.com/docs/guides/data-structure/.

Sannikov, A. (2022). Python Data Structures: Lists, Dictionaries, Sets, Tuples (2022).

[online] Dataquest. Available at: https://www.dataquest.io/blog/data-structures-in-

python/.

Stack Abuse. (N.D.). Search Algorithms in Python. [online] Available at:

https://stackabuse.com/search-algorithms-in-python/.

GeeksforGeeks (2017). I am searching Algorithms - GeeksforGeeks. [online]

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/searching-algorithms/.

Wikipedia Contributors (2019). Search algorithm. [online] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Search_algorithm.

Thomas (2022). Linear Search through a list. [online] Available at:

https://stackoverflow.com/questions/74026648/linear-search-through-a-list [Accessed

20 Jul. 2023].

Krishna, A. (2022). Search Algorithms – Linear Search and Binary Search Code

Implementation and Complexity Analysis. [online] freeCodeCamp.org. Available at:

https://www.freecodecamp.org/news/search-algorithms-linear-and-binary-search-

explained/

https://www.techtarget.com/searchdatamanagement/definition/data-structure
https://www.edureka.co/blog/data-structures-in-python/
https://www.linode.com/docs/guides/data-structure/
https://www.dataquest.io/blog/data-structures-in-python/
https://www.dataquest.io/blog/data-structures-in-python/
https://stackabuse.com/search-algorithms-in-python/
https://www.geeksforgeeks.org/searching-algorithms/
https://en.wikipedia.org/wiki/Search_algorithm
https://stackoverflow.com/questions/74026648/linear-search-through-a-list
https://www.freecodecamp.org/news/search-algorithms-linear-and-binary-search-explained/
https://www.freecodecamp.org/news/search-algorithms-linear-and-binary-search-explained/

