
1 | P a g e

1. Create a Python program which uses a constructor and abstract class.

When an object is formed, a constructor, a specific method, is invoked. The

characteristics of the object are initialised using it. The constructor method in Python

is known as __init__() (GeeksforGeeks, 2019). For instance, a class that cannot be

instantiated is considered abstract. It serves as an introductory class for other

instantiable classes. A group of subclasses' shared interfaces is defined using abstract

classes. Their use can facilitate inheritance and code reuse.

The brand-new ABC support framework is implemented in the pure Python standard

library module abc. It includes decorators @abstractmethod and @abstractproperty

and the metaclass ABCMeta (peps.python.org, N.D.).

The @abstractmethod decorator, which can be used to declare abstract methods, is

likewise defined by the ABC module. It is impossible to instantiate a class with at least

one method specified with this decorator, but it has yet to be overridden. Such methods

can be called directly or indirectly from the overriding method in the subclass

(docs.python.org, N.D.).

Here is an example of a Python program that demonstrates how to use an abstract

class and constructor, based on examples from John, G. (2019):

from abc import ABC, abstractmethod

class Shape(ABC):
 """An abstract class representing a shape."""

 def __init__(self, name: str):
 """Initializes a shape."""
 self.name = name

 @abstractmethod
 def area(self) -> float:
 """Returns the area of the shape."""
 pass

2 | P a g e

class Circle(Shape):
 """A class representing a circle."""

 def __init__(self, name: str, radius: float):
 """Initializes a circle."""
 super().__init__(name)
 self.radius = radius

 def area(self) -> float:
 """Returns the area of the circle."""
 return 3.14 * self.radius ** 2

class Square(Shape):
 """A class representing a square."""

 def __init__(self, color, width, height):
 super().__init__(color)
 self.width = width
 self.height = height

 def area(self):
 return self.width * self.height

circle = Circle("blue", 3)
print(f"Circle Area: {circle.area()}")

square = Square("red", 4, 5)
print(f"Square Area: {square.area()}")

This programme produces two shapes: a square and a circle. The areas of the shapes

are then printed.

The class Shape is amorphous. It cannot, therefore, be instantiated directly. It must be

subclassed instead. Subclasses of the Shape class include the Circle and Square

classes. Both of them implement the abstract method area(). The shape's size is

returned by this method.

The main() function produces two shapes: a circle and a square. The areas of the

shapes are then printed.

2. Describe the concepts of polymorphism, aggregation and composition.

Object-oriented programming (OOP) ideas that explain the connections between

objects include polymorphism, aggregation, and composition (Kanjilal, 2018).

3 | P a g e

Polymorphism is the ability of an object to take on different shapes. In object-oriented

programming, polymorphism is achieved by overriding and inheritance. Thanks to

inheritance, one object can take on the characteristics and functions of another object

(Duggal, N. 2023). A subclass may override a method declared in a superclass to

implement the method in the subclass's fashion. A Dog class, for instance, might be

descended from a Pet class. Because of this, a Dog object may be used in any situation

where a Pet object is anticipated.

A relationship between two objects is called an aggregattion in which one complete

item contains another object's component. The portion object may exist independently

from the whole thing (Azzam, 2020). For instance, an Engine object and a Car object

may be aggregated. Although the Engine object can exist without the Car object, it is

useless without it.

Since the component parts of an item cannot exist separately from the whole, the

composition is a more potent form of aggregation (Visual-paradigm.com, 2019). For

instance, an object such as a house might be made up of rooms. Without the House

object, the Room objects are not possible.

3. Name variables according to the namespace within which they exist.

Lowercase letters are used to spell out the names of modules, variables, functions,

and methods. When one of these names contains one or more embedded names, with

the exception of modules, the embedded names are capitalised. Classes have names

that adhere to the same rules but start with a capital letter. All letters in a variable that

refers to a constant are capitalised, and any names that are embedded are separated

4 | P a g e

by an underscore (Lambert, K. A & Osborne, M. 2010). In the table below are the

examples of Python Naming Conventions:

Examples of Python Naming Conventions Examples of Python Naming Conventions

Type of Name Examples Type of Name Examples

Variable salary, hoursWorked, isAbsent Variable salary, hoursWorked, isAbsent

Constant ABSOLUTE_ZERO, INTEREST_RATE Constant ABSOLUTE_ZERO, INTEREST_RATE

Function or method printResults, cubeRoot,
isEmpty

Function or method printResults, cubeRoot,
isEmpty

Making your code readable relies heavily on the proper naming of variables. There is

only one rule for naming variables: Make variables that explain their purpose and

maintain a recurring theme across your code (curc.readthedocs.io, N.D.).

It's typical to employ a naming convention that uses prefixes or suffixes to denote the

namespace when naming variables according to the namespace in which they exist.

This promotes clarity and prevents naming conflicts among several namespaces

(Coghlan et. Al. 2001).

A namespace is a collection of symbolic names that are currently defined, along with

details about the objects to which each name refers (Sturtz, J. 2020).

Built-in namespaces, global namespaces, local namespaces, and enclosing

namespaces are the four different types of namespaces available in Python (Raj,

2021). For instance, here are these definitions:

The programme or module level is where global namespaces are defined. It includes

the names of things defined in a module or the main programme. A global namespace

is established when a programme begins and remains in place until the Python

interpreter ends the application. The example below clarifies the idea of a global

namespace:

myNum1 = 10

5 | P a g e

myNum2 = 10

def add(num1, num2):

temp = num1 + num2
return temp

A block of code or a function may be defined inside of another block of code or function.

In these circumstances, the inner function or code block has access to the namespace

of the outside function or code block. As a result, the inner function or code block is

enclosed within the outer namespace. This is seen in the example that follows:

myNum1 = 10
myNum2 = 10

def add(num1, num2):

temp = num1 + num2

def print_sum():
print(temp) return temp

A local namespace is created when defining a class, function, loop, or any other type

of code block. The names assigned inside that function or block of code can only be

accessed inside; they cannot be accessed outside of it. When a function or block of

code is finished, the local namespace is formed and then deleted. Here is an example:

myNum1 = 10
myNum2 = 10

def add(num1, num2):
 temp = num1 + num2
 return temp

The names of built-in objects and functions are stored in a built-in namespace. It is

produced when the Python interpreter is launched, remains active as long as the

interpreter is open, and is deleted when the interpreter is shut down. Names of built-in

data types, exceptions, and functions like print() and input() are all included in this list.

The following describes how we can access every name in the built-in namespace:

6 | P a g e

builtin_names = dir(__builtins__)
for name in builtin_names:
 print(name)

7 | P a g e

References:

GeeksforGeeks. (2019). __init__ in Python. [online] Available at:

https://www.geeksforgeeks.org/__init__-in-python/.

peps.python.org. (N.D.). PEP 3119 – Introducing Abstract Base Classes |

peps.python.org. [online] Available at: https://peps.python.org/pep-3119/#the-abc-

module-an-abc-support-framework [Accessed 11 Jun. 2023].

docs.python.org. (N.D.). abc — Abstract Base Classes — Python 3.9.1

documentation. [online] Available at: https://docs.python.org/3/library/abc.html.

John, G. (2019). Abstract Base Classes in Python (abc). [online] Available at:

https://www.tutorialspoint.com/abstract-base-classes-in-python-abc [Accessed 11

Jun. 2023].

Kanjilal, J. (2018). Association, aggregation, and composition in OOP explained.

[online] InfoWorld. Available at: https://www.infoworld.com/article/3029325/exploring-

association-aggregation-and-composition-in-oop.html.

Duggal, N. (2023). Learn Polymorphism in Python with Examples | Simplilearn.

[online] Available at: https://www.simplilearn.com/polymorphism-in-python-

article#what_is_polymorphism_in_python [Accessed 21 Jun. 2023].

Azzam, A. (2020). Aggregation vs. Composition in Object Oriented Programming.

[online] Medium. Available at: https://medium.com/swlh/aggregation-vs-composition-

in-object-oriented-programming-3fa4fd471a9f.

Visual-paradigm.com. (2019). UML Association vs Aggregation vs Composition.

[online] Available at: https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/uml-aggregation-vs-composition/.

https://www.geeksforgeeks.org/__init__-in-python/
https://peps.python.org/pep-3119/#the-abc-module-an-abc-support-framework
https://peps.python.org/pep-3119/#the-abc-module-an-abc-support-framework
https://docs.python.org/3/library/abc.html
https://www.tutorialspoint.com/abstract-base-classes-in-python-abc
https://www.infoworld.com/article/3029325/exploring-association-aggregation-and-composition-in-oop.html
https://www.infoworld.com/article/3029325/exploring-association-aggregation-and-composition-in-oop.html
https://www.simplilearn.com/polymorphism-in-python-article#what_is_polymorphism_in_python
https://www.simplilearn.com/polymorphism-in-python-article#what_is_polymorphism_in_python
https://medium.com/swlh/aggregation-vs-composition-in-object-oriented-programming-3fa4fd471a9f
https://medium.com/swlh/aggregation-vs-composition-in-object-oriented-programming-3fa4fd471a9f
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

8 | P a g e

Lambert, K.A. and Osborne, M. (2010). Fundamentals of python: from first programs

through data structures. Cengage Learning.

curc.readthedocs.io. (N.D.). Coding best practices — Research Computing University

of Colorado Boulder documentation. [online] Available at:

https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html.

Van Rossum, G., Warsaw, B. & Coghlan, N. (2001). PEP 8 – Style Guide for Python

Code | peps.python.org. [online] peps.python.org. Available at:

https://peps.python.org/pep-0008/.

Sturtz, J. (2020). Namespaces and Scope in Python – Real Python. [online]

realpython.com. Available at: https://realpython.com/python-namespaces-scope/.

Sturtz, J. (2021). What is Namespace in Python? [online] Available at:

https://www.pythonforbeginners.com/basics/what-is-namespace-in-

python#:~:text=What%20is%20a%20local%20namespace [Accessed 11 Jun. 2023].

https://curc.readthedocs.io/en/latest/programming/coding-best-practices.html
https://peps.python.org/pep-0008/
https://realpython.com/python-namespaces-scope/
https://www.pythonforbeginners.com/basics/what-is-namespace-in-python#:~:text=What%20is%20a%20local%20namespace
https://www.pythonforbeginners.com/basics/what-is-namespace-in-python#:~:text=What%20is%20a%20local%20namespace

