
1 | P a g e

1. Experiment with further UML models, including a class diagram.

Booch (1998) defined a diagram as a graphical representation of elements, frequently

depicted as a connected network of objects and interactions (vertices and arcs).

Diagrams are projections of systems because they are created to let you see a system

from many angles. A diagram is a simplified representation of a system's constituent

parts. For instance, the nine similar diagrams included in the UML are the Class

diagram; Object diagram; Use case diagram; Sequence diagram; Collaboration

diagram; State chart diagram; Activity diagram; Component diagram; and Deployment

diagram.

A class diagram illustrates classes, interfaces, collaborations, and connections. These

diagrams are used to model object-oriented systems the most frequently. Class

diagrams address the static design view of a system. Active class diagrams are used

to address the static process perspective of a system.

This class diagram represents a straightforward banking system. The three main

classes in the system are bank, account, and customer:

2 | P a g e

The Bank class in this class diagram illustrates a bank and features methods like

createAccount(), getAccount(), getCustomerAccounts(), and closeAccount() in

addition to characteristics like name and accounts. With fields like accountNumber,

balance, and customer, as well as methods like getAccountNumber(),

getBalance(), getCustomer(), deposit(), and withdraw(), the Account class

represents a bank account. The Customer class is used to represent a bank customer

and has methods like getCustomerId(), getName(), getAddress(), and

getPhoneNumber(), as well as attributes like customerId, name, address, and

phoneNumber (Nym, 2022).

2. Write a Python program which implements the UML class diagram.

class Bank:
 def __init__(self, name):
 self.name = name
 self.accounts = []

 def createAccount(self):
 account_number = len(self.accounts) + 1
 account = Account(account_number)
 self.accounts.append(account)
 return account

 def getAccount(self, account_number):
 for account in self.accounts:
 if account.getAccountNumber() == account_number:
 return account
 return None

 def getCustomerAccounts(self, customer_id):
 customer_accounts = []
 for account in self.accounts:
 if account.getCustomer().getCustomerId() == customer_id:
 customer_accounts.append(account)

 return customer_accounts

 def closeAccount(self, account_number):
 for account in self.accounts:
 if account.getAccountNumber() == account_number:
 self.accounts.remove(account)

 break

3 | P a g e

class Account:
 def __init__(self, account_number, balance=0):

 self.account_number = account_number
 self.balance = balance
 self.customer = None

 def getAccountNumber(self):
 return self.account_number

 def getBalance(self):
 return self.balance

 def getCustomer(self):
 return self.customer

 def deposit(self, amount):
 if amount > 0:
 self.balance += amount

 def withdraw(self, amount):

 if 0 < amount <= self.balance:
 self.balance -= amount

class Customer:
 def __init__(self, customer_id, name, address, phone_number):

 self.customer_id = customer_id
 self.name = name
 self.address = address
 self.phone_number = phone_number

 def getCustomerId(self):

 return self.customer_id

 def getName(self):
 return self.name

 def getAddress(self):

 return self.address

 def getPhoneNumber(self):
 return self.phone_number

 def setName(self, name):

 self.name = name

 def setAddress(self, address):
 self.address = address

 def setPhoneNumber(self, phone_number):

 self.phone_number = phone_number

(w3resource, 2023)

4 | P a g e

References:

Booch, G., Rumbaugh, J., Jacobson, I. and Wesley, A. (1998). Unified Modeling

Language User Guide, The. [online] Available at:

https://patologia.com.mx/informatica/uug.pdf [Accessed 6 Jun. 2023].

Nym (2022). Class Diagram for Bank Management System. [online]

Itsourcecode.com. Available at: https://itsourcecode.com/uml/bank-management-

system-class-diagram-uml/ [Accessed 6 Jun. 2023].

w3resource. (2023). Python Class - Bank Account Management System. [online]

Available at: https://www.w3resource.com/python-exercises/class-exercises/python-

class-real-life-problem-3.php [Accessed 10 Jun. 2023].

https://patologia.com.mx/informatica/uug.pdf
https://itsourcecode.com/uml/bank-management-system-class-diagram-uml/
https://itsourcecode.com/uml/bank-management-system-class-diagram-uml/
https://www.w3resource.com/python-exercises/class-exercises/python-class-real-life-problem-3.php
https://www.w3resource.com/python-exercises/class-exercises/python-class-real-life-problem-3.php

