
1 | P a g e

1. Discuss which UML models most apply at different Software Development

Life Cycle stages.

The objects of a software system can be specified, visualised, built, and documented

using the Unified Modelling Language (UML), a general-purpose visual modelling

language. It includes choices and knowledge of systems that must be made. It is used

to comprehend, plan, browse, configure, maintain, and manage data about these

systems. It is designed to be applied across all development approaches, lifecycle

phases, application domains, and media (Booch et al. 1999). For instance, throughout

the entire development lifecycle. From requirements to deployment, the UML is

seamless. The same ideas and notation can be applied at various phases of

development and even combined within a single model. Moving from one level to

another is optional. For iterative, incremental development, this seamlessness is

essential.

As Martin (2019) explained, the Software development life cycle (SDLC) is a

methodical process that guarantees the quality and accuracy of the software created.

The SDLC process aims to develop high-quality software that fulfils client demands.

The system development must be finished within the budgeted time range. The SDLC

comprises a comprehensive plan that outlines how to organise, create, and maintain

specific software. Each stage of the SDLC life cycle has a distinct procedure and

outputs that feed into the following stage.

According to O’Reilly (N.D.), requirements gathering, high-level design, low-level

design, coding and unit testing, integration testing, and deployment are some of the

2 | P a g e

traditional software development process stages. These domains are divided into

several categories and subcategories using various approaches.

To meet each step of the Software Development Lifecycle (SDLC), UML offers a

variety of diagram types. The following UML models are some of the most useful at

various Software Development Life Cycle (SDLC) stages:

Use case diagrams to determine the specific groups of activities system users engage

in during the high-level design phase. The use case diagrams also describe the

participants in each use case. Using use cases might be beneficial when creating test

strategies.

Class diagrams specify the domain model for the application as early as the high-

level design process, particularly the interactions between and among data objects

within the system and the operations that can be carried out on them.

Activity diagrams help define system process flows during requirements gathering

and high-level design. Activity diagrams, as opposed to programme flow charts,

contain users and activities outside of the code itself and allow for the distinct

identification of the responsibilities played by various players.

Sequence and communication diagrams between components in a system are

used to model these interactions. They are frequently employed in the SDLC's design

and implementation phases.

State machine diagrams represent the various states in which an object may be and

the events that may cause it to change conditions. Typically, they are employed during

the SDLC's design and implementation phases.

3 | P a g e

The following table lists the UML models that are best suited for use at various phases

of the SDLC:

SDLC Phase UML Model

Requirements Gathering Use case diagrams

Design Class diagrams, sequence diagrams, communication
diagrams, activity diagrams, state machine diagrams

Implementation Class diagrams, sequence diagrams, communication
diagrams, activity diagrams, state machine diagrams

Testing Sequence diagrams, communication diagrams, activity
diagrams, state machine diagrams

Deployment Class diagrams, sequence diagrams, communication
diagrams, activity diagrams, state machine diagrams

2. Making reference to ‘The Unified Modeling Language Reference Manual

Second Edition’, use the State Machine Diagram in Figure 3-7 to design a

similar model for a washing machine.

A state machine simulates the potential life histories of a class of items. States in a

state machine are connected via transitions. Each state represents an object’s lifetime

period when it meets specific requirements. When an event occurs, a transition that

moves an object to a new state may be fired. An impact (action or activity) associated

with a transition may occur when the transition fires. State machine diagrams display

state machines (Booch et al. 2004). User interfaces, device controllers, and other

reactive subsystems can all be modelled as state machines. They could also be used

to define passive objects that, throughout their existence, move through multiple

qualitatively diverse stages, each with a particular behaviour.

The following Diagram is a model for a washing machine that illustrates the various

states a washing machine might be in and the potential triggers for those states to

4 | P a g e

change. The diagram, for instance, demonstrates that the washing machine may be in

many states, including "Off," “Start”, "Filling," "Washing," "Rinsing," "Spinning," “Dry”

and "Done." Unexpected events may also occur to the washing machine; in this case,

it will instantly end the current state and move to the Done state.

The washing machine begins in the Off position, then switches to the Start state when

the user clicks the Start button and starts filling with water; when the water reaches

the expected level, it switches to the washing state; now, is washing and cleaning the

clothing; when this process finish, moves into the rinsing state after the washing cycle

is finished; now clean water is used to rinse the clothing; when ends this process,

switches to spinning to remove extra water; then moves into the Dry state when the

spinning cycle is finished. When it finishes dry, the Machine stops and switches to the

Done state. The washing machine will also change its state in response to unexpected

events.

Additional information for each state:

Off: The washing machine is not in use and has been turned off.

5 | P a g e

Start: The user has chosen a wash cycle and turned on the washing machine.

Filling: Water is being poured into the washing machine.

Washing: The garments are being cleaned and agitated by the washing machine.

Rinsing: Clean water is used to rinse the clothes in the washing machine.

Spinning: The washing machine spins the garments to get rid of extra water.

Dry: The clothes are dried in the washer.

Done: The washing machine's wash cycle is complete and now ready for unloading.

6 | P a g e

References:

Rumbaugh, J., Jacobson, I. & Booch, G. (1999). The unified modeling language

reference manual

Martin, M. (2019). SDLC (Software Development Life Cycle) Tutorial: What is,

Phases, Model. [online] Guru99.com. Available at: https://www.guru99.com/software-

development-life-cycle-tutorial.html.

O’Reilly (N.D.). 2.3. UML and Software Development Lifecycles - J2EE Design

Patterns [Book]. [online] Available at: https://learning.oreilly.com/library/view/j2ee-

design-patterns/0596004273/ch02s03.html [Accessed 5 Jun. 2023].

Booch, G., Jacobson, I. & Rumbaugh, J. (2004). Advanced Praise for The Unified

Modeling Language Reference Manual, Second Edition. (n.d.). Available at:

https://personal.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--

UML_2.0_Reference_CD.pdf.

Shawn Rakowski. (2011). The State Diagram – Washing Machine. [online] Available

at: https://srakowski.wordpress.com/2011/02/19/the-state-diagram-washing-machine/

[Accessed 10 Jun. 2023].

https://www.guru99.com/software-development-life-cycle-tutorial.html
https://www.guru99.com/software-development-life-cycle-tutorial.html
https://learning.oreilly.com/library/view/j2ee-design-patterns/0596004273/ch02s03.html
https://learning.oreilly.com/library/view/j2ee-design-patterns/0596004273/ch02s03.html
https://personal.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://personal.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://srakowski.wordpress.com/2011/02/19/the-state-diagram-washing-machine/

