
1 | P a g e

Formative activities

Optional extension activities

1. Write a Python program to achieve basic employee-related functionality,

including retaining employee details and allowing an employee to book a

day of annual leave. Extend the Python program you created to use

protected and unprotected variables.

Based on Python R. (N.D) examples, the software below was made to show how a

Python programme can carry out basic employment-related tasks, including keeping

employee data and letting them book annual leave days. It also demonstrates the

usage of protected and unprotected variables:

Creating Class Hierarchies

class Employee:
 def __init__(self, name: object, employee_id: object) -> object:
 self._name = name # protected variable
 self.employee_id = employee_id # unprotected variable
 self._annual_leave_balance = 20 # protected variable

 def book_annual_leave(self, days):
 if days <= self._annual_leave_balance:
 self._annual_leave_balance -= days
 print(f"{self._name} has booked {days} day(s) of annual leave.")
 else:
 print("Insufficient annual leave balance.")

 def get_annual_leave_balance(self) -> object:
 return self._annual_leave_balance

Creating an employee instance
employee1: Employee = Employee("Sandra Cristina", 141977)

Accessing protected and unprotected variables
print(f"Employee ID: {employee1.employee_id}")
print(f"Employee name: {employee1._name}") # Protected variable
print(f"Annual leave balance: {employee1.get_annual_leave_balance()}")

Booking annual leave
employee1.book_annual_leave(5)
print(f"Annual leave balance: {employee1.get_annual_leave_balance()}")

(Rodriguez, N.D.).

2 | P a g e

In this program, the Employee class represents an employee and has the following

attributes and methods:

• _name: A protected variable that stores the employee's name.

• employee_id: An unprotected variable that stores the employee's ID.

• _annual_leave_balance: A protected variable representing the employee's

days available for annual leave.

The book_annual_leave method allows the employee to book a specified number of

days of annual leave. Then checks if the requested days are available based on the

remaining balance and updates it accordingly.

The get_annual_leave_balance method returns the current annual leave balance

days for an employee.

To test the program, an instance of the Employee class is created with a name and

the employee’s ID. The protected and unprotected variables are accessed and

displayed. Then, the employee books five days of annual leave, and the remaining

day’s balance is displayed.

Reference:

Rodriguez, I. (N.D.). Inheritance and Composition: A Python OOP Guide – Real

Python. [online] realpython.com. Available at: https://realpython.com/inheritance-

composition-python/.

https://realpython.com/inheritance-composition-python/
https://realpython.com/inheritance-composition-python/

3 | P a g e

Unit 2 – Reflection

In my studies of the Object-oriented program module, I thoroughly reviewed the Codio

module on Class, Functions, and Methods in Unit 2. This helped me better understand

how to enhance the development of Python programs. Additionally, I learned valuable

insights into the importance of Debugging: Classes and Objects that will benefit my

coding endeavours.

In completing an extension activity, I wrote a Python program to manage basic

employee tasks, such as storing employee information and enabling employees to

request annual leave. I further developed this program by incorporating protected and

unprotected variables. I have documented my findings in my e-portfolio.

The Summative Assessment was another significant aspect of this module, which

required designing and implementing software to facilitate the operation of an

autonomous car. Additionally, I prepared a pen portrait for a driverless car user and

created a use case model to outline how users interact with the software system. I

have recorded these activities in my ePortfolio.

Throughout this module, I have explored different aspects of Python programming and

object-oriented analysis. I expanded my knowledge of analysing program domains

using case and state machine diagrams. Understanding the interactions between

software and actors and the functional requirements of a particular software system

was crucial to my learning. This helped me identify the essential features and

behaviours needed in a software program. Moreover, I have learned how to create

use-case diagrams that illustrate various events and interactions in a software

development context, providing a clear understanding of the interactions between

actors and systems. Reading chapters 5 and 6 from The Unified Modeling Language

4 | P a g e

Reference Manual gave me a deeper appreciation for UML and its significance in

relationships, dependencies, and modelling. This newfound knowledge has improved

my abilities and will be invaluable in accurately conveying the system design in the

upcoming summative assessment.

In addition to the studies in this unit, the most challenging were the activities, which

required a huge effort on my part in researching the use case and writing about the

pen portrait of a driverless car and preparing for the seminar of the next unit. Another

point that I need to highlight during this week of study is UML which is a new subject

for me, and although it is still complicated and its full understanding, the available

reading is an excellent base source to be able to research the topic. I will not have

mastered the subject in a week. Still, I will have comprehensive knowledge of the issue

at the end of this module and have some strong points to become a professional ready

to answer the basics with factual knowledge.

