
1 | P a g e

Seminar: Design Patterns in a Python Program

1.1 Define the test cases for the following system development: Oracle.

(n.d.) Cruise Ship Management and Cruise Software.

The Shipboard Property Management System (SPMS) simplifies guest and crew

handling procedures for cruise operators. It stores guest information centrally,

including loyalty program numbers, emergency contacts, and cabin numbers. The

onboard identifier card is used for gangway security, mobile mustering, and point of

sale. SPMS efficiently manages financial information and tracks critical crew

information with customised cards. The system also facilitates visitor handling and

ensures onboard safety by creating muster lists and tracking safety duties and

attendance. As the ship’s central data hub, SPMS offers many modules to help

manage all aspects of the cruise operation (Oracle, N.D.).

I have identified 4 test cases that can be used in the shipboard property management

system:

1.1.1 Test Case 1 – The system has Administrative and Check-in capabilities: to

shorten wait times for visitors, the system enables crew members to perform

guest check-ins away from the desk. Crew members can access visitor

information, profile updates, guardianship assignments, payment information,

and terms & conditions. Operators can establish templates, create contracts,

and specify the mandatory data for the profile screen using the Mobile

Administration module. The technology can also speed check-in by compiling

all relevant data into a single, centralised profile.

1.1.2 Test Case 2 – The system has Security Capabilities: with real-time counts

for passengers, crew, and guests, the security system offers total security and

management. Counts and movement logs are centrally accessible. The ability

to specify shore leave rule sets is also provided. Photos and other information

can be included for quick identification. The module can be used with magnetic

cards, barcodes, and RFID technology. There is also a mobile choice.

1.1.3 Test Case 3 – The system has Event Management capabilities: this section

is called the "Event Management" feature that helps organise shipboard events,

meals, and equipment. Efficiently handles booking, posting, and printing tickets

for recreational activities, including shore tours, spas, and cinemas. It also

https://www.oracle.com/uk/industries/hospitality/cruise/

2 | P a g e

allows for easy cancellation and cost tracking, supporting multiple price levels

and foreign languages. The system can import pre-paid and pre-booked

excursions and offers a complete solution for managing onboard spas, including

scheduling, appointment calendars, and retail item sales.

1.1.4 Test Case 4 – The system has Staff Management capabilities: this feature

tracks crew working hours and integrates with Security. The time and

Attendance function supports various login methods. The Maintenance module

tracks requests, printed work orders, and links to guest reservations. The

Housekeeping module generates cleaning tasks automatically, with a

customisable colour status and linen change forecast. Staff can view work

orders and schedule cleaning services, with direct messaging available.

1.2 Which design patterns do you consider compatible with others, and why?

The architectural pattern records the various systems and software's design structures

so they can be reused. Developers face the same issues repeatedly throughout their

careers, in projects, and while producing software code. Design patterns, which offer

engineers a reusable technique to handle these issues and enable software engineers

to accomplish the same structural outcome for a particular project, are one way to

address this (Walker, 2022).

A few examples of possible design pattern pairings are provided below:

1.2.1. Composite and Decorator Patterns: The composite pattern allows treat

objects as a group and defines a standard interface. The decorator pattern adds new

functionality to an object without changing its structure. They both use composition and

single responsibility but serve different purposes. Sometimes they are used together

for flexibility but should be used carefully according to design goals and requirements.

(Linkedin, N.D.).

1.2.2. Strategy and Factory Pattern: Factory and Strategy patterns are helpful

application design patterns. The Factory pattern is often used in frameworks for

3 | P a g e

creating different subtypes of objects, while the Strategy pattern is ideal for code with

multiple branching statements (Verinext, 2021).

1.2.3 Factory and Builder Pattern: There are two types of design patterns: Builder

and Factory Method. Builder is used to assemble complex items, while Factory Method

constructs objects without knowing their exact type. These patterns can be used

together for greater flexibility and easy addition of new features (Kralj, 2022).

1.3 Read Zhang & Budgen (2012). Which design patterns are used most

commonly, and why?

According to Zhang & Budgen (2012), design patterns in software engineering are

often advocated without concrete evidence to support their effectiveness. Much of the

literature on patterns is focused on documenting them rather than analysing

experiences with using them. To determine patterns' effectiveness as a knowledge

transfer mechanism, they conducted a mapping study using Systematic Literature

Review. This approach helped to systematically gather and analyse empirical data on

a given topic, reducing bias in individual studies. However, one of the papers they

examined has identified the following advantages as being claimed for design patterns:

1.3.1 Using patterns improves programmer productivity and program quality.

1.3.2 Novices can increase their design skills significantly by studying and applying

patterns.

1.3.3 Patterns encourage best practices, even for experienced designers.

1.3.4 Design patterns improve communication, both among developers and from

developers to maintainers.

The team identified essential topics that needed further investigation during the

mapping study. However, they acknowledged that each pattern should be evaluated

separately. Therefore, the team concentrated on examining which designs had been

4 | P a g e

researched, the methods used, and the level of agreement or disagreement.

Additionally, they conducted a quality assessment to evaluate the reliability of each

study.

(Zhang & Budgen, 2012)

Object-Oriented studies mainly used patterns from the GoF catalogue, including five

creational, seven structural, and 11 behavioural patterns. Composite, Observer, and

Visitor were the most studied patterns, while several others were only used in one

study. Only two studies focused on a specific pattern and its properties. The patterns

not studied were Builder, Prototype, Flyweight, Proxy, Interpreter, Iterator, Mediator,

and Memento.

5 | P a g e

(Zhang & Budgen, 2012)

They analysed the participants and organisation of studies on pattern usage. Most had

programming experience, recognising the need for maturity in object-oriented design.

Studies involved modification and coding, with only a few exceptions.

(Zhang & Budgen, 2012)

To clarify discrepancies in design pattern usage, they reviewed 22 papers with

"experience" data and selected seven for further analysis. These papers presented

observations as explicit "lessons."

6 | P a g e

Fifteen out of twenty-three GoF patterns have been empirically evaluated, but more is

needed about why specific patterns were chosen for study. Many studies focused on

maintenance activities, leaving little knowledge about patterns' role in development.

Observational studies suggest caution in misusing patterns, and case studies may be

helpful. Using patterns improves communication between developers and maintainers,

but there needs to be evidence that they help novices learn about design. More studies

are required to understand patterns' effectiveness in productivity and quality.

(Zhang & Budgen, 2012)

Using patterns in software development can improve communication when adequately

documented. However, there needs to be evidence that it helps novices learn design.

The impact of patterns on productivity and quality needs to be clarified and requires

further research.

According to the article, different design patterns are employed more frequently

depending on the context and domain. Nevertheless, some design patterns are

7 | P a g e

typically seen as being often used and well-liked in the software development industry.

These include Singleton Pattern, Factory Pattern, Observer Pattern, Adapter Pattern,

and Decorator Pattern because these patterns are frequently employed because they

offer tested answers to recurrent design issues. They encourage software systems'

modularity, adaptability, reuse, and upkeep. Due to their considerable documentation

and study, developers recognise and understand these patterns well.

(Zhang & Budgen, 2012)

8 | P a g e

References:

Oracle (N.D.). Oracle Hospitality Cruise Shipboard Property Management System.

Available at: https://www.oracle.com/uk/a/ocom/docs/industries/hospitality/hosp-

shipboard-property-sys-ds-4413369.pdf [Accessed 21 Jul. 2023].

Walker, V. (2022). 14 Software architecture design patterns to know. [online] Enable

Architect. Available at: https://www.redhat.com/architect/14-software-architecture-

patterns.

LinkedIn (n.d.). How do you choose between composite and decorator patterns for

tree structures in Java? [online] Available at: https://www.linkedin.com/advice/0/how-

do-you-choose-between-composite-decorator.

Verinext (2021). Strategy & Factory Patterns in Spring Boot Application: Part I.

[online] Verinext. Available at: https://verinext.com/strategy-factory-patterns-in-spring-

boot-application-part-i/ [Accessed 21 Jul. 2023].

Kralj, K. (2022). Builder vs Factory Method Pattern: An In-Depth Comparison. [online]

Available at: https://methodpoet.com/builder-vs-factory-

method/#Factory_Method_vs_Builder_patterns_what_are_the_differences [Accessed

21 Jul. 2023].

Zhang, C. & Budgen, D. (2012). What Do We Know about the Effectiveness of

Software Design Patterns? IEEE Transactions on Software Engineering, 38(5),

pp.1213–1231. doi:https://doi.org/10.1109/tse.2011.79.

https://www.oracle.com/uk/a/ocom/docs/industries/hospitality/hosp-shipboard-property-sys-ds-4413369.pdf
https://www.oracle.com/uk/a/ocom/docs/industries/hospitality/hosp-shipboard-property-sys-ds-4413369.pdf
https://www.redhat.com/architect/14-software-architecture-patterns
https://www.redhat.com/architect/14-software-architecture-patterns
https://www.linkedin.com/advice/0/how-do-you-choose-between-composite-decorator
https://www.linkedin.com/advice/0/how-do-you-choose-between-composite-decorator
https://verinext.com/strategy-factory-patterns-in-spring-boot-application-part-i/
https://verinext.com/strategy-factory-patterns-in-spring-boot-application-part-i/
https://methodpoet.com/builder-vs-factory-method/#Factory_Method_vs_Builder_patterns_what_are_the_differences
https://methodpoet.com/builder-vs-factory-method/#Factory_Method_vs_Builder_patterns_what_are_the_differences

