
1 | P a g e

1. Write unit tests to ensure correct functionality of Python code.

A unit test is a test that verifies the functionality of a single line of code, typically

modularised as a function. Regression testing relies heavily on unit tests to guarantee

that the code is stable and continues to operate as expected after modifications are

made (Chng, 2022).

Pykes (2022) states that the general reason why unit testing is important is that before

allowing code to enter a production environment, developers must confirm that it

complies with quality requirements. Unit tests, however, are essential for several

reasons, as unit testing during software development aids in the early detection of code

defects, preventing the need for expensive corrections later. Additionally, it offers

ongoing documentation for thorough comprehension and boosts developers' trust in

the code’s functionality.

Python's standard library includes a module called "unittest," which offers tools for

testing code. Unit testing ensures that specific parts of a function's behaviour are

correct, making integrating them with other parts much easier (Aviani, 2019).

According to Aviani (2019), a "test case" is a set of unit tests that prove a function

works as intended in a full range of situations in which it may find itself. Test cases

should consider all possible types of input a function could receive from users and

include tests to represent each situation.

To write tests, create a test file, import the unittest module, and define the testing class

that inherits from the unittest. TestCase. Then, write a series of methods to test all

cases of your function's behaviour. A line-by-line explanation of the code can be found

below, based on the ideas of Aviani (2019):

2 | P a g e

import unittest

Here is the code that requires testing.
def add_numbers(a, b):
 return a + b

A test case class that inherits from unittest.TestCase
class TestAddNumbers(unittest.TestCase):

 # A test method that starts with the word "test_"
 def test_add_numbers(self):
 # Test case inputs and expected output
 a = 2
 b = 3
 expected_result = 5

 # Call the function being tested
 result = add_numbers(a, b)

 # Assert that the result matches the expected output
 self.assertEqual(result, expected_result)

Run the tests
if __name__ == '__main__':
 unittest.main()

I had to ensure the add_numbers() function worked correctly. To do so, I create a test

case class named TestAddNumbers that inherits from unittest.TestCase. In this class,

I defined a test method called test_add_numbers(), where we set up the

add_numbers() function inputs, a and b, and the expected output, expected_result.

Next, we call the add_numbers() function and store the result in the result variable. To

verify whether the result matches the expected_result, we use the assertEqual()

method provided by the unittest.TestCase. If the result and expected_result match, the

test passes; otherwise, it fails. To execute the tests, we check if the module is running

as the primary program using if __name__ == '__main__':. If it is, we call the

unittest.main() to run the tests.

2. Run pylint against a Python script to demonstrate stylistic correctness.

Using Pylint as a Python developer can be quite beneficial. Powerful static code

analyser Pylint extensively examines your code for mistakes, upholds coding

3 | P a g e

standards, spots code smells, and makes refactoring recommendations. Additionally,

Pylint can complete all of these tasks without executing your code! It's a crucial tool

that functions flawlessly with Python 2 and 3, making it a priceless resource for

developers of all skill levels (PyPI, N.D).

To run Pylint, we need to install it first using pip on the command line:

pip install pylint

Then, we can run it on our script using this command:

pylint my_script.py

And we should see an output like this:

(base) C:\Users\hcham\PycharmProjects\pythonTest>cd C:\Users\hcham\Desktop\Essex\2. Object
Oriented Programming May 2023\Unit 10

(base) C:\Users\hcham\Desktop\Essex\2. Object Oriented Programming May 2023\Unit 10>pylint
my_test.py
************* Module my_test
my_test.py:18:0: C0304: Final newline missing (missing-final-newline)
my_test.py:1:0: C0114: Missing module docstring (missing-module-docstring)
--
Your code has been rated at 7.78/10

In my example, pylint found two stylistic errors and scored 7.78/10, meaning my code

does not comply with the PEP 8 style guide. As stated by NeuralNine (2023), to make

it right, I will need to add the missing ‘Final newline missing (missing-final-newline)’

and Missing module docstring (missing-module-docstring) to my script.

3. Document code for release to stakeholders.

Creating comprehensive software documentation is crucial because it assists users in

understanding how to use your software, provides developers and other technical

stakeholders with information regarding the technical aspects of your software, and

guarantees a seamless and consistent software development process. Moreover, well-

crafted software documentation can enhance your software's overall quality and user

4 | P a g e

experience (Oragui, 2023). Furthermore, according to Oragui (2023), producing

software documentation benefits users, developers, and technical stakeholders by

improving collaboration, efficiency, quality, and user experience by providing clear and

consistent information about the software.

According to Brown (2022), every project is distinct, and varied documentation is

required depending on the stage, the team's requirements, and other factors. Usually,

a project's documentation is broken down into five phases:

1. At the start of a project, it's crucial to create documentation that outlines its

purpose, scope, timelines, stakeholders, and roles. This helps assign the right

team members and lays the groundwork for future decisions. Key documents

include a project proposal, charter, and business case.

2. Create a high-level plan with milestones and timelines during project planning.

This helps identify tasks, dependencies and achieve goals. Documentation

includes a project plan, business requirements, product requirements,

communication plan, risk management plan, quality management plan,

procurement plan, and acceptance test plan.

3. Document progress and challenges during project execution, including

deliverables and tracking documents. Hold project meetings to monitor progress

and address any issues. Track issues and record information on their cause,

status, resolution, and plan to manage them. Create risk control, change

requests, quality assurance, and acceptance reports to summarise the project's

progress and final deliverables.

4. Monitoring and controlling are critical aspects of project management. It ensures

that the project is on track by reviewing its progress compared to the project

plan. This phase co-occurs with the execution phase, where the team creates

deliverables and updates tracking documents. Key documentation includes

team member and contractor status reports and a product acceptance form to

confirm that the deliverable meets all required standards and requirements.

5. During project closure, it's important to document and validate completion,

reflect on successes and failures, and gather recommendations for future

projects. Key documents include a final report, closure checklist, summary, and

lessons learned document. These provide insights into best practices, factors

for success or failure, and valuable information for future projects.

5 | P a g e

References:

Chng, Z.M. (2022). A Gentle Introduction to Unit Testing in Python. [online] Machine

Learning Mastery. Available at: https://machinelearningmastery.com/a-gentle-

introduction-to-unit-testing-in-python/.

Pykes, K. (2022). Pytest Tutorial: A hands-on guide to unit testing. [online] Available

at: https://www.datacamp.com/tutorial/pytest-tutorial-a-hands-on-guide-to-unit-

testing.

Aviani, G. (2019). An Introduction to Unit Testing in Python. [online] Available at:

https://www.freecodecamp.org/news/an-introduction-to-testing-in-python/ [Accessed

9 Jul. 2023].

PyPI (N.D.). pylint: python code static checker. [online] PyPI. Available at:

https://pypi.org/project/pylint/.

NeuralNine (2023). Mastering Python Code Quality with Pylint. [online] Available at:

https://www.youtube.com/watch?v=RqdhVaX50mc.

Oragui, D. (2023). Software Documentation Best Practices [With Examples]. [online]

Available at: https://helpjuice.com/blog/software-documentation.

Brown, J. (2022). Project Documentation 101: A Powerful Way to Share Knowledge.

[online] Available at: https://helpjuice.com/blog/project-documentation.

https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/
https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/
https://www.datacamp.com/tutorial/pytest-tutorial-a-hands-on-guide-to-unit-testing
https://www.datacamp.com/tutorial/pytest-tutorial-a-hands-on-guide-to-unit-testing
https://www.freecodecamp.org/news/an-introduction-to-testing-in-python/
https://pypi.org/project/pylint/
https://www.youtube.com/watch?v=RqdhVaX50mc
https://helpjuice.com/blog/software-documentation
https://helpjuice.com/blog/project-documentation

