
1 | P a g e

1. Examine what it means for a program to be object-oriented.

Object-oriented programming (OOP), according to Gillis (2021), is a style of computer

programming that organises software architecture around data and objects rather than

functions and logic. In addition, an object is an instance of a class, which serves as a

blueprint or template for the potential attributes and methods that might be present in

an object to produce reusable, modular, and maintainable code (Doherty, 2020).

Utilising classes, objects, encapsulation, inheritance, and polymorphism, the four main

building blocks, is a crucial part of OOP, according to Nick (2021). For each of these

classes, for instance, below is an explanation:

1. Encapsulation: This programming approach conceals implementation

information and considerably lessens software development's complexity. With

this method, it is possible to update or maintain a class without worrying about

the methods that depend on it. Additionally, encapsulation makes sure that your

data is protected from outside tampering. Another name for encapsulation is

data-hidden. Encapsulation can be considered a shield that prevents external

code from accessing data. Encapsulation enforces modularity by tying data and

codes together as a single entity.

2. Inheritance: Regarding inheritance, classes and methods are compared to

parents and children. Some characteristics of the parents may be present at

birth in the child. Just as many children might inherit the attributes of their

parents, inheritance ensures the reuse of codes. I search for a superclass with

all or part of the code I need to implement a function, method, or class. From

the existing class, I can then create my own.

2 | P a g e

3. Polymorphism: Polymorphism refers to having several forms. In Python,

variables, functions, and objects can have many forms. Run-time polymorphism

and compile-time polymorphism are the two different types of polymorphism.

While the application operates, run time may take another state, and compile

time may take another form during compilation.

4. Abstraction: In Python, abstraction is a programming technique in which the

user is only shown the information necessary to understand the programme.

Abstraction is more interested in concepts than actual happenings. In Python,

abstraction is accomplished using either Abstract classes or Interfaces, showing

the user the crucial details alone.

The primary principles of object-oriented programming are simplicity, code reusability,

extendibility, and security. Object-oriented programming offers a powerful technique to

organise and structure code, making developing and maintaining large-scale software

systems easier. Encapsulation, abstraction, inheritance, and polymorphism are used

to accomplish these. Reusing code ensures that programmes are produced more

quickly.

2. Explore the syntax used to define a Python class.

Classes are created in Python using the 'class' keyword and the class name

(GeeksforGeeks, 2019). The fundamental syntax for defining a class in Python, for

instance, is as follows:

class ClassName:
 #class variables
 class_variable = "Hello, World!"

 #constructor
 def __init__(self, parameter1, parameter2):
 self.parameter1 = parameter1
 self.parameter2 = parameter2

3 | P a g e

 #instance method
 def instance_method(self):
 print("This is an instance method.")

 #static method
 @staticmethod
 def static_method():
 print("This is a static method.")

After looking at the class definition, here are some thorough explanations for each

section:

1. class ClassName: ClassName appears after the class keyword in the first line
of the class definition. The indented section of code that serves as the class's
body is denoted by a colon (:).

2. class_variable = "Hello, World!": A class variable is used by all class
instances, such as this one. Class variables are defined outside of any methods
and inside the class body.

3. def __init__(self, parameter1, parameter2):: When a new class instance is

created, the constructor function is invoked. The phrase "init" is preceded by
two double underscores, indicating this is a unique Python method. The self and
parameter1 and parameter2 parameters are any additional arguments supplied
to the constructor, and the self denotes the instance of the class being formed.

4. self.parameter1 = parameter1: This line changes the parameter1 instance

variable to the value of the parameter1 constructor argument. Each class
instance has its instance variables specified inside a method using the self
keyword.

5. def instance_method(self):: This is a prime example of an instance method,

often known as a method that may be used on a class instance. Since it relates
to the class instance on which the method is being called, the self parameter is
necessary for all instance methods.

6. print("This is an instance method."): The instance_method method's body

begins with this line. It merely prints a message to the console in this instance.

7. @staticmethod: This decorator marks the following method as static. Instead
of using a class object, static methods can be called on the class itself.

8. def static_method():: This illustrates a static method. Because a static method

is not linked to a particular class instance, it does not have a self-parameter.

9. print("This is a static method."): The static_method method's body is
contained in this line. Additionally, it prints a message to the console in this
instance.

4 | P a g e

Despite being a simple example of a Python class, this one helps us understand the

syntax and organisation of a Python class definition.

3. Investigate how to define different data types in Python.

Numerous data types that may store and modify data are included in Python (Sturtz,

N.D.). For instance, the most popular Python data types and examples of how to define

them are listed below:

1. Integers (int): Positive and negative integers are whole numbers without a
decimal point. Here is a Python definition of an integer: my_integer = 10

2. Floating-point numbers (float): Decimal numbers are floating-point numbers.

Here is an illustration of how to define a float in Python: my_float = 3.14

3. Strings (str): Character groups that are separated by quotation marks are called
strings. Here is an illustration of how to define a string in Python:
my_string = "Hello, World!"

4. Booleans (bool): Boolean values are true or false. Here is an illustration of how

to define a boolean in Python: my_boolean = True

5. Lists (list): Lists are organised groups of elements from any form of data. Here
is a Python definition of a list example: my_list = [1, 2, 3, "four", 5.0]

6. Tuples (tuple): Similar to lists but immutable, tuples cannot be modified after

they have been defined. Here is an example of a Python tuple definition:
my_tuple = (1, 2, 3, "four", 5.0)

7. Dictionaries (dict): Dictionaries are collections of key-value pairs that are not

ordered. Each key has a corresponding value, which may be a value of any data
type. Here is an illustration of how to define a dictionary in Python:
my_dict = {"name": "John", "age": 30, "gender": "male"}

These are a few examples of the data types specified in Python. Sets, bytes, and
complex numbers are examples of other data types. By assigning a value to a variable
with the proper syntax for a specific data type, I can identify a data type in Python.

4. Define a Python class.

A class in Python serves as a guide or model for building objects with comparable
attributes and behaviours (Amos, N.D.). A class specifies the properties and operations
that make up an object belonging to that class. Here is a straightforward Python class
definition example:

5 | P a g e

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def introduce(self):
 print("Hi, my name is", self.name, "and I am", self.age, "years old.")

In this example, I have created a class named Person with one method, introduce(),
and the attributes name and age.
Only the __init__ method can be used when making an object from the class. The
attributes of the object are initialised using this method. The self keyword is used in
this example to set the corresponding characteristics of the object for the two
arguments, name and age.
The introduced method is a standard one that writes a message instructing the
individual and accepts no arguments.

I can carry out the following actions to produce an object of the Person class:

person1 = Person("Hainadine", 45)

This generates an object of the Person class with the name "Hainadine" and the age
of 45 called person1. The introduce method can then be called on the object:

person1.introduce()

The following message will appear as a result:

Hi, my name is Hainadine and I am 45 years old.

A Python class generally defines a template for creating objects with specific traits and
behaviours. At the same time, encapsulating the data and processes unique to that
entity allows for code reuse and abstraction.

6 | P a g e

References:

Gillis, A. (2021). What is Object-Oriented Programming (OOP)? [online] TechTarget.
Available at: https://www.techtarget.com/searchapparchitecture/definition/object-
oriented-programming-OOP.

Doherty, E. (2020). What is Object Oriented Programming? OOP Explained in Depth.
[online] Educative: Interactive Courses for Software Developers. Available at:
https://www.educative.io/blog/object-oriented-programming.

Nick (2021). Polymorphism, Encapsulation, Data Abstraction and Inheritance in
Object-Oriented Programming | nerd.vision. [online] www.nerd.vision. Available at:
https://www.nerd.vision/post/polymorphism-encapsulation-data-abstraction-and-
inheritance-in-object-oriented-programming.

GeeksforGeeks. (2019). Python Classes and Objects. [online] Available at:
https://www.geeksforgeeks.org/python-classes-and-objects/.

Sturtz, J. (N.D.). Basic Data Types in Python – Real Python. [online] realpython.com.
Available at: https://realpython.com/python-data-types/.

Amos, D. (N.D.). Object-Oriented Programming (OOP) in Python 3 – Real Python.
[online] realpython.com. Available at: https://realpython.com/python3-object-oriented-
programming/.

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.educative.io/blog/object-oriented-programming
https://www.nerd.vision/post/polymorphism-encapsulation-data-abstraction-and-inheritance-in-object-oriented-programming
https://www.nerd.vision/post/polymorphism-encapsulation-data-abstraction-and-inheritance-in-object-oriented-programming
https://www.geeksforgeeks.org/python-classes-and-objects/
https://realpython.com/python-data-types/
https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/

