
1 | P a g e

e-Portfolio Activities

1. Review the article by Di Silvestro & Nadir (2021). Discuss one aspect of this

article which you find unexpected.

My observations:

This article highlights multiple subjects that cover various aspects of adult education,

including how ePortfolio might promote deeper learning and reflection in graduate adult

education. The article also looks at Saudi Arabian adult learners' motivations for

learning. Through the intersectionality theory perspective, it focuses on the

acculturation experiences of Syrian Muslim refugee women in the United States. The

article examines these women's difficulties and the significance of offering immigrants

and refugees’ long-term education programmes to aid their effective acculturation. The

research also emphasises how ePortfolio can be a valuable addition to graduate adult

education programmes to promote reflective and in-depth learning.

The fact that students were taken aback by the need to work together when creating

their ePortfolio is an unexpected component of this essay. In my opinion and the

students' positive experiences, building ePortfolio effectively enhances our learning.

Doing so requires us to read widely and conduct extensive research, which helps us

properly understand and master the subject matter. Speaking from personal

experience, I have encountered more diverse research topics since I began to develop

my ePortfolio, which encourages and pleases me as I read to respond to questions

from the units I am studying.

2 | P a g e

2. Develop a Python program and apply protected and unprotected

variables.

Protected variables are data members of a class that can only be accessed within that

class and its descendants. In Python, there are no "Public" instance variables. For

determining who has access control of a data member in a class, however, we use the

underscore '_' symbol. Thus, any member prefixed with an underscore, whether a

function, method, or data member, must be handled as a non-public API or any Python

code component (GeeksforGeeks, 2020).

Access control is a concept in most object-oriented programming languages; this has

something to do with abstraction. Some attributes and methods on an object are

designated as private, meaning only that object can access them. Others are marked

protected, meaning only that class and its subclasses can access them. The rest are

public, meaning any other object can access them (Phillips, 2018).

class Person:
 def __init__(self, name, age):
 self.name = name # Unprotected variable
 self._age = age # Protected variable

 def get_age(self):
 return self._age

 def set_age(self, age):
 self._age = age

person1 = Person("Hainadine", 45)

print(person1.name) # Output: Hainadine
print(person1.get_age()) # Output: 45

person1._age = 40 # Unprotected access to protected variable
print(person1.get_age()) # Output: 40

person1.set_age(50) # Protected access to protected variable
print(person1.get_age()) # Output: 50

3 | P a g e

References:

GeeksforGeeks. (2020). Protected variable in Python. [online] Available at:

https://www.geeksforgeeks.org/protected-variable-in-python/ [Accessed 6 May 2023].

Phillips, D. (2018). Python 3 object-oriented programming: Build robust and

maintainable software with object-oriented design patterns in Python 3.8. Packt

Publishing Ltd.

https://www.geeksforgeeks.org/protected-variable-in-python/

4 | P a g e

Unit 1 - Reflection

During this first week of studying Object-oriented Programming, I delved into the

fascinating world of Python programming. The focus of this first week was to gain a

comprehensive understanding of the evolution of programming languages, specifically

towards object orientation and the subsequent advancements made to address the

challenges faced when programming in an object-oriented manner.

The Lecture cast, Introduction to Python and the Object-Oriented Programming

Philosophy, was a great way to learn about all Object-oriented programming, as it

provided insights into the reasons behind the emergence of object-oriented

programming (OOP) paradigms. OOP introduced a new way of structuring code,

emphasising the organisation of data and behaviour into cohesive entities called

objects—this shift from procedural to object-oriented programming allowed for more

modular, reusable, and scalable code.

Exploring the ‘Evolution of Programming Languages’, I sincerely appreciated Python’s

elegance and versatility. It was intriguing to see how Python combines the benefits of

object-oriented programming with the flexibility of a dynamically-typed language.

Furthermore, studying the challenges encountered when programming object-oriented

provided valuable insights into the complexity developers face. While OOP brings

numerous advantages, such as encapsulation, inheritance, and polymorphism, it also

presents challenges, such as maintaining code clarity, managing dependencies, and

designing effective class hierarchies.

Understanding these challenges gave me a deeper appreciation for best practices in

object-oriented design and the importance of writing modular, reusable, and

maintainable code. I realised that designing object-oriented software systems requires

5 | P a g e

carefully considering the relationships between objects, identifying appropriate

abstractions, and creating well-defined interfaces.

Overall, this first week of studying Object-oriented Programming provided a strong

foundation in Python programming and an exploration of the evolution towards object-

oriented programming.

Throughout the first week of this module, I have also devoted my attention to studying

and devised a structured plan for the next 12 weeks. My project breaks down my study

approach into reading, researching, note-taking, and coding activities. Since coding is

a key component of this module, I aim to absorb as much knowledge as possible about

Python coding. Although I have more experience with SQL, I am a novice in Python.

Despite having some certifications and participating in small Python projects, I aim to

enhance my skills through this course. I plan to assimilate this course's theoretical

concepts and essential definitions to become a skilled professional with in-depth

knowledge, which will help me excel as a data analyst or project manager.

