
1 | P a g e

1. Write an algorithm.

An algorithm is a set of instructions that describes how to solve a problem (Prabhu,

2019).

For instance, here are some steps you can take to write an algorithm:

1. Determine the outcome of your code. What specific problem or task do you want

it to solve?

2. Select a starting point.

3. Find the algorithm's endpoint.

4. List the steps from start to finish.

5. Determine how you will complete each step.

6. Review the algorithm.

Before writing an algorithm, you must understand how to solve a problem. The solution

must be logical, and all inputs and outputs must be identified. You can print or display

all of the results.

Here is a quick method for finding the maximum element in an array of integers:

Algorithm: FindMaxElement

Input: An array of integers, A

Output: The maximum element in A

1. Set a variable max to the first element of A.
2. For each subsequent element in A, compare it to max.
3. If the current element is greater than max, update max to be the current element.
4. Continue until all elements in A have been compared.
5. Return max as the maximum element in A.

2 | P a g e

This algorithm assumes that the array's first element is the maximum element. It then

loops through the remaining elements in the array, updating the max variable

whenever an element is found that is greater than the current maximum. Finally, it

returns the maximum number of elements discovered.

2. Investigate the quality parameters of an algorithm.

An algorithm's quality parameters are used to assess how well an algorithm performs.

The parameters can be used to determine an algorithm's efficiency, memory

consumption, and accuracy (Khan Academy, N.D.).

An algorithm's quality parameters assess how well it performs its intended task

(Nechvolod, 2018). For instance, here are some standard quality parameters that can

be used to evaluate an algorithm's effectiveness and efficiency are as follows:

1. The algorithm's correctness refers to whether it produces the correct output for

a given input. The algorithm must handle all possible inputs and produce the

expected output.

2. The efficiency of an algorithm refers to how quickly it can complete its task and

how much computational resources it requires. A good algorithm should be able

to solve the problem in a reasonable amount of time and with few resources.

3. The algorithm's robustness refers to handling unexpected or incorrect input. The

algorithm should be capable of dealing with errors, invalid input, and

unexpected situations without crashing or producing incorrect output.

4. The algorithm's Maintainability refers to how simple it is to modify and maintain

the algorithm over time. The algorithm should be designed to be simple to

understand, modify, and extend as needed.

5. The algorithm's Scalability refers to how well an algorithm performs as the size

of the input data increases. Scalable algorithms are those that can handle large

inputs without significantly degrading performance.

6. The algorithm's Usability refers to how easy it is for users to use and interact

with the algorithm. The algorithm should have a simple interface, be simple to

understand, and be capable of providing useful feedback to users.

We can gain insight into an algorithm's strengths and weaknesses and identify areas

for improvement by evaluating it against these quality parameters. Finally, how well an

algorithm performs in real-world scenarios and whether it meets the needs of its users

determines its quality.

3 | P a g e

References:

Prabhu, R. (2019). Introduction to Algorithms. [online] GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/introduction-to-algorithms/.

Khan Academy. (n.d.). Measuring an algorithm’s efficiency | AP CSP (article) | Khan

Academy. [online] Available at: https://www.khanacademy.org/computing/ap-

computer-science-principles/algorithms-101/evaluating-algorithms/a/measuring-an-

algorithms-efficiency.

Nechvolod, A. (2018). 12 software architecture quality attributes and their types.

[online] Syndicode - Custom Software Development Company. Available at:

https://syndicode.com/blog/12-software-architecture-quality-attributes/.

https://www.geeksforgeeks.org/introduction-to-algorithms/
https://www.khanacademy.org/computing/ap-computer-science-principles/algorithms-101/evaluating-algorithms/a/measuring-an-algorithms-efficiency
https://www.khanacademy.org/computing/ap-computer-science-principles/algorithms-101/evaluating-algorithms/a/measuring-an-algorithms-efficiency
https://www.khanacademy.org/computing/ap-computer-science-principles/algorithms-101/evaluating-algorithms/a/measuring-an-algorithms-efficiency
https://syndicode.com/blog/12-software-architecture-quality-attributes/

